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Abstract 
 

Mapping is a useful tool in the magnetic field analysis and design. In some specific research area, such as the nuclear magnetic 
resonance (NMR) or the magnetic resonance imaging (MRI), it is important to map the magnetic field in the interesting space with 
high accuracy. In this paper, an indirect mapping method in the center volume of an air-core solenoid is presented, based on the 
solution of the Laplace’s equation for the field. Through the mathematical analysis on the mapping calculation, we know that the 
condition number of the matrix, generated by the measurement points, can greatly affect the error of mapping result. Two different 
arrangement methods of the measurement points in field mapping are described in this paper: helical cylindrical line (HCL) method 
and parallel cylindrical line (PCL) method. According to the condition number, the HCL method is recommended to measure the 
field components using one probe. As a simple example, we mapped the magnetic fields in a MRI main magnet system. Comparing 
the results in the different methods, it is feasible and convenient to apply the condition number to reduce the error in the field 
mapping calculation. Finally, some guidelines were presented for the magnetic field mapping in the center volume of the air-core 
solenoid. 
 
Keywords: Condition number, error of magnetic field mapping, helical cylindrical line 
 
 
 

1. INTRODUCTION 
 

In many applications of the magnet, such as the 
nuclear magnetic resonance (NMR) or the magnetic 
resonance imaging (MRI), it is important to obtain 
accurate information about the magnetic fields [1]. In 
NMR and MRI, normally a map of the magnetic field 
distribution is needed to guarantee the uniformity of the 
field in a warm bore volume. The direct way for the 
magnetic field mapping is to measure the magnetic field 
at many points in the interesting volume. However, in 
order to ensure the accuracy of the reconstruction, the 
number of the measurement points will be very 
considerable and the measurement time also can be very 
long [2]. On the contrary, the indirect way uses several 
measurement points to obtain the expression of the 
magnetic field. According to the magnetic field 
satisfying the Laplace’s equation in the source free area, 
the solution of the Laplace’s equation is used to describe 
the magnetic field [3]. And the magnetic field mapping 
becomes to use the measurement data to fit the 
mathematic equation. Thus, the mapping becomes a 
powerful tool for adjusting the homogeneity of the 
magnetic field. But the arrangement of the measurement 
points in the space greatly affects the mapping results. A 
suitable choice of the measurement points will lead to a 
good mapping result. 

In this paper, we introduced some basic theorems of 
the magnetic field mapping in the air-core solenoid and 
the principle of the condition number in the mapping. 
According to the arrangements of the measurement 

points, we described two mapping methods: HCL 
method and PCL method. Using the comparative analysis, 
the effects of the condition numbers were shown. As a 
simple example, the two methods were applied to the 
magnetic field mapping in a MRI main magnet. At last, 
we proposed several suggestions on how to improve the 
accuracy of the field mapping in the air-core solenoid. 
 
 

2. BASIC THEORY OF MAPPING 
 
2.1. Mapping Procedure 

The purpose of the mapping is to find the magnetic 
field distribution in the space. Assume the existence of a 
magnetic scalar potential 𝑉𝑚, whose negative gradient 
gives the magnetic field 𝑩. Due to no current sources in 
the central volume of the air-core solenoid, the scalar 
potential 𝑉𝑚  should satisfies the Laplace’s equation, 
∇2𝑉𝑚 = 0. 

In the spherical coordinates (𝑟,𝜃,𝜑) , where 𝑟  is 
radial distance, 𝜃  is polar angle and 𝜑  is azimuthal 
angle, the magnetic field in the z-direction, 𝐵𝑧(𝑟,𝜃,𝜑) 
in the central volume of the solenoid may be expressed 
by [4]: 
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where 𝑃𝑛𝑚(𝑢) is the set of Legendre polynomials (for m 
= 0) and associated Legendre functions (for m > 0) with 
𝑢 = cos 𝜃, 𝐴𝑛𝑚 and 𝐵𝑛𝑚 are constants. * Corresponding author: sjlee@uu.ac.kr 
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As shown in (1), if the constants 𝐴𝑛𝑚 and 𝐵𝑛𝑚  are 
known, the magnetic field 𝐵𝑧(𝑟,𝜃,𝜑) at any point can 
be calculated through the coordinates of the point. The 
field mapping is reduced to obtain the constants 𝐴𝑛𝑚 and 
𝐵𝑛𝑚. 

In practice, (1) needs to be considered to have finite 
terms of summation. And the effective cut-off can be 
found according to the accuracy in the mapping. Assume 
there are 𝑁  terms needed to sum in (1) and for 
convenience reasons, (1) is rewritten as matrix form: 
 

XMB zmzm =    (2) 
 
where 𝑩𝑧𝑚 is a vector of the z-axis component of the 
magnetic field at the measurement points, 𝑩𝑧𝑚 =
[𝐵𝑧1 𝐵𝑧2 ⋯ 𝐵𝑧𝑁]𝑇 , 𝑿  is a vector of 𝐴𝑛𝑚  and 𝐵𝑛𝑚  in 
(1), 𝑿 = [𝐴10 𝐴20 𝐴21 𝐵21 ⋯]𝑇 , and 𝑴𝑧𝑚  is an 𝑁 × 𝑁 
square matrix. The matrix 𝑴𝑧𝑚 can be obtained by the 
coordinates of the measurement points. 

According to (2) and the data from the measurement 
points, the constants 𝐴𝑛𝑚  and 𝐵𝑛𝑚  can be calculated. 
Then the z component of the magnetic field at the any 
points can be mapped by (1) and the coordinates of these 
points. 
 
2.2. Condition Number in Mapping 

In the solution of the constants 𝐴𝑛𝑚  and 𝐵𝑛𝑚 , the 
matrix 𝑴𝑧𝑚  is very important for the mapping 
procedure. Because the form of the matrix 𝑴𝑧𝑚 
depends on the coordinates of the measurement points, 
the errors in the calculation are different when we select 
different measurement points. Here the condition number 
is employed to evaluate the error in the calculation. 

Assume 𝜹𝑩𝑧𝑚  is the disturbance in 𝑩𝑧𝑚, and 𝜹𝑿 is 
the disturbance in 𝑿 due to 𝛿𝑩𝑧𝑚. According to (2), we 
can obtain 
 

XB δMδ zmzm
=    (3) 

 
Take norms of both sides in (3), 

 

zmzm BX δMδ 1−≤    (4) 

 
From (2), we also can get, 

 
XMB zmzm ≤    (5) 

 
According to (4) and (5), the relative error of 𝑿 can 

be written as 
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where ‖𝑴𝑧𝑚

−1 ‖‖𝑴𝑧𝑚‖  is defined as the condition 
number of the matrix 𝑴𝑧𝑚, 𝑘(𝑴𝑧𝑚). Obviously, when 
the condition number is very high, a small disturbance of 
𝑩𝑧𝑚 can cause a large of the error in the solution. Hence 

we can arrange the suitable measurement points to 
reduce the condition number 𝑘(𝑴𝑧𝑚)  and obtain a 
satisfactory mapping result. 
 
 

3. ARRANGEMENT METHODS 
 

3.1. Two Arrangement Methods in Mapping 
Considering the mapping volume in the center of a 

solenoid, we can consider two different methods to 
arrange the measurement points in the mapping as shown 
in Fig. 1. 

According to the trajectory of the measurement points, 
these methods are named as Helical Cylindrical Line 
(HCL) method and Parallel Cylindrical Line (PCL) 
method as shown in Fig. 1. In the HCL method, the 
measurement points distribute uniformly on a helical 
cylindrical line, where the radius of the cylindrical 
surface is R1, the height of the line is 2H1 and the number 
of points is N1. Compared with the HCL method, in the 
PCL method, the measurement points uniformly 
distribute on several parallel circles with equal radius R2, 
and the distance between the top circle and bottom circle  

 

 
(a) HCL method 

 

 
(b) PCL method 

 

Fig. 1. Two arrangement methods of the measurement 
points in the magnetic field mapping. 
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is 2H2. The number of the circles is Nc and the number of 
points in the circle is Np. 

In the PCL method, the trajectory of the measurement 
points is the parallel circles instead of the helical line in 
the HCL method. Thus we can take advantage of 
multiple probes to measure the field on the cylindrical or 
spherical surface to reduce the measurement times. On 
the contrary, it would be better to use only one probe to 
measure the field in the HCL method. Thus, the structure 
of the mapping device can be simplified. Especially in 
the HCL method, the mapping device can be designed to 
use one probe and one driving motor. 
 
3.2. Experimental Methodology 

Assume the measurement points are in the center 
volume of the solenoid and limited in a cylinder volume, 
which the maximum radius on the circular surface is a1. 
In order to facilitate the discussion, the parameters in the 
methods are normalized by a1. According to (2), the 
number of the measurement points determines the 
dimension of the matrix . Increased dimension of 
the matrix will lead to an increase in the value of 

. Thus we try to use the same number of points 
in the methods as much as possible to avoid its effect in 
the experiments. 

In the HCL method, the normalized radius R1/a1 is less 
than 1 according to the definition. And the normalized 
height H1/a1 assumes less than 2. Definition of the 
azimuthal angle between two adjacent points is φ1 and 
the range of φ1 is 0 to π. Using the different parameters, 
the minimum value of  is found and plotted as 
below. 

As shown in Fig. 2(b), we can find that the minimum 
value of  varies greatly with the azimuthal 
angle φ1. In some special cases, such as φ1=90°, the 
minimum value of  becomes infinite. 
Compared with φ1, there is the small influence of R1/a1 
and H1/a1 on the minimum value of  according 
to Fig. 2(a) and Fig. 2(c). The number of points also 
impacts the value of the condition number. Because it 
changed the size of , the condition number will 
increase with the number of points used in mapping 
calculation as shown in Fig. 2(d). 

 

 
(a) normalized radius               (b) azimuthal angle 

 
(c) normalized height               (d) number of points 

 
Fig. 2. Influence of parameters in the HCL method. 

 
(a) normalized radius at Np=8      (b) normalized height at Np=8 

 

Fig. 3. Influence of parameters in the PCL method. 
 

 
 

Fig. 4. Comparison of minimum condition number in the 
HCL method and the PCL method. 

 

In the PCL method, assume the number of the sensors, 
Nc, may be 5, 6, or 7. And the number of points in each 
circle is Np. The total number of the measurement points 

can be determined by Nc×Np in this method. Also we can 
find that the azimuthal angles of the measurement points 
are limited by the value of Np. 

As shown in Fig. 3, the normalized radius R2/a1 and 
normalized height H2/a1 do not have much impact on the 
minimum condition number in the PCL method. 
However, the value of Nc and Np can greatly change the 
minimum condition number. 

Comparing the minimum condition numbers in these 
two methods, we can find that the minimum condition 
number in the HCL method is less than that in the PCL 
method as shown in Fig. 4. 
 
 

4. CONCLUSION 
 

To demonstrate the effects of the condition number in 
the magnetic field mapping, two different experiments 
are performed. In the first one, the HCL method is 
applied to arrange the measurement points in the center 
volume of an MRI main magnet. The second set of 
experiments is to compare the mapping results between 
the HCL method and the PCL method. 

In the system, the MRI main magnet is designed to 
provide an axial magnetic field of about 1.5T at the 
nominal operating current density of 225A/mm2. Fig. 5 
illustrates the side view of the superconducting solenoids. 
And the parameters of the solenoid are shown in Table I. 
The mapping volume is a sphere in the center of the 
solenoid. For the sake of the calculation, we used rzBI 

0 0.2 0.4 0.6 0.8 1

2

2.5

3

3.5

Radius

Lo
g(

k)

0 60 120 180
0

5

10

15

Azimuth

Lo
g(

k)

0 0.5 1 1.5 2

2

3

4

5

6

Height

Lo
g(

k)

40 60 80 100 120

2

3

4

5

Number of points

Lo
g(

k)

0.2 0.4 0.6 0.8 1
10

15

20

25

30

35

Radius

Lo
g(

k)

Nc=5 Nc=6 Nc=7
0 0.5 1 1.5 2

10

15

20

25

30

35

Height

Lo
g(

k)

Nc=5 Nc=6 Nc=7

30 40 50 60 70 80 90 100 110 120 130
0

5

10

15

20

25

30

35

Number of points

L
og

(k
)

The comparison of the minimum condition numbers

HCL
PCL

33



 
A study on the effect of the condition number in the magnetic field mapping of the Air-Core solenoid 

 
 

program to obtain the magnetic field generated by the 
solenoid with high accuracy [5-6]. 

For the magnetic field mapping in the center volume, 
the HCL method is firstly applied to arrange the 
measurement points to obtain the minimum condition 
number. According to the analysis, we changed the value 
of the azimuthal angle of measurement points in the HCL 
method to obtain the different condition number. As 
shown in Table II, the value of the normalized radius, the 
normalized height and the number of points are fixed in 
order to eliminate the influence of the other factors on 
the mapping. 

 

 
 

Fig. 5. Side view of solenoids in the system. 
 

TABLE I 
PARAMETERS FOR SOLENOID. 

Coil 
Width 
[mm] 

Thickness 
[mm] 

Current Density 
[A/mm2] 

M1 45.2 21 225 
M2 106.4 17 225 
M3 235.6 21 225 
M1’ 45.2 21 225 
M2’ 106.4 17 225 
M3’ 235.6 21 225 

 
TABLE II 

PARAMETERS IN HCL METHOD. 
Case 1 2 3 

Normalized Radius 0.1 0.1 0.1 
Azimuthal Angle 158 43 57 

Normalized Height 0.8 0.8 0.8 
Number of Point 81 81 81 

Logarithm of 
Condition Number 

3.742228 4.247371 7.466576

 

 
(a) on the z-axis              (b) on the x-axis 

 

Fig. 6. Error of results in the mapping using the HCL 
method. 

 
TABLE III 

ANALYSIS OF MAPPING RESULTS IN HCL METHOD. 
Case 1 2 3 

(a) z-axis 

SSE 2.14E-5 7.36E-4 2.21E-1 
MSE 2.14E-6 7.36E-5 2.21E-2 

RMSE 1.46E-3 8.58E-3 1.49E-1 
R-square 0.999999 0.999992 0.997781 

(b) x-axis 

SSE 4.26E-5 7.33E-4 3.10E-1 
MSE 4.26E-6 7.33E-5 3.10E-2 

RMSE 2.06E-3 8.56E-3 1.76E-1 
R-square 0.999998 0.999972 0.987971 

TABLE IV 
PARAMETERS IN PCL METHOD. 

Case 4 5 6 
Number of Sensors 5 6 7 
Normalized Radius 0.1 0.1 0.1 
Normalized Height 0.8 0.8 0.8 
Number of Point 80 84 84 

Logarithm of 
Condition Number 

18.28831 32.24966 33.82820 

 

 
   (a) on the z-axis               (b) on the x-axis 

 

Fig. 7. Error of results in the mapping using the PCL 
method. 

 
TABLE V 

ANALYSIS OF MAPPING RESULTS IN PCL METHOD. 
Case 4 5 6 

(a) z-
axis 

SSE 1.97E+2 9.85E+2 - 
MSE 1.97E+1 9.85E+1 - 

RMSE 4.44E+0 9.92E+0 - 
R-square -0.984933 -8.90639 - 

(b) x-
axis 

SSE 6.58E+0 4.75E+2 - 
MSE 6.58E-1 4.75E+1 - 

RMSE 8.11E-1 6.89E+0 - 
R-square 0.744414 -17.4664 - 

 
The logarithm of the error in the mapping results is 

plotted in Fig. 6 and the sum of squares due to error 
(SSE), mean squared error (MSE), root mean squared 
error (RMSE), and coefficient of determination (R-
square) are also calculated in Table III. According to Fig. 
6 and Table III, we can find that the mapping results 
become worse when the condition number increases. 

Using the PCL method to map the magnetic field, the 
parameters are selected to close the values in the HCL 
method and listed in Table IV. The condition numbers in 
the PCL method are much larger than in the HCL method. 
The condition number is 103.74 in Case 1. However it is 
almost an increase of 1015 times in Case 4. As shown in 
Fig. 7 and Table V, the mapping results in the PCL 
method are worse than the HCL method because the 
condition number increase. Even in Case 6, there is no 
result in the magnetic field mapping. 
 
 

5. CONCLUSION 
 

To map the magnetic field in the center volume of the 
air-core solenoid, two different arrangement methods of 
the measurement points are presented. According to the 
comparison of the mapping results, the condition number 
of the matrix can greatly affect the error in the mapping 
results. Generally mapping with a small condition 
number is better than that with a large condition number. 
The mapping results will become unreliable when the 
condition number in mapping is too large. 
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Through the analysis, it was found that the HCL 
method is better than the PCL methods in the mapping. 
One reason is that the minimum condition numbers in the 
HCL method is much less than the PCL method. Another 
reason is that the structure of the mapping system using 
the HCL method is simpler. The parameters in the HCL 
method can be adjusted to obtain satisfactory mapping 
results according to the condition number of the matrix 
in the mapping calculation. 

In fact, the error in the mapping is related not only to 
the condition number of the matrix, but also to the 
position of the measurement points and the target points. 
However, it is feasible and convenient to use the 
condition number of the matrix to reduce the error in the 
magnetic field mapping. 
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