• Title/Summary/Keyword: magnetic resonance image

Search Result 949, Processing Time 0.033 seconds

Projection-type Fast Spin Echo Imaging (프로젝션 타입 고속 스핀 에코 영상)

  • 김휴정;김치영;김상묵;안창범
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.1
    • /
    • pp.42-51
    • /
    • 2000
  • Purpose: Projection-type Fast Spin Echo (PFSE) imaging is robust to patient motion or flow related artifact compared to conventional Fast Spin Echo (FSE) imaging, however, it has difficulty in controlling $T_2$ contrast. In this paper, Tz contrast in the PFSE method is analyzed and compared with those of the FSE method with various effective echo times by computer simulation. The contrasts in the FSE and PFSE methods are also compared by experiments with volunteers. From the analysis and simulation, it is shown that ${T_2}-weighted$ images can well be obtained by the PFSE method proposed. Materials and methods: Pulse sequence for the PFSE method is implemented at a 1.0 Tesla whole body MRI system and $T_2$ contrasts in the PFSE and FSE methods are analyzed by computer simulation and experiment with volunteers. For the simulation, a mathematical phantom composed of various $T_2$ values is devised and $T_2$ contrast in the reconstructed image by the PFSE is compared to those by the FSE method with various effective echo times. Multi-slice ${T_2}-weighted$ head images of the volunteers obtained by the PFSE method are also shown in comparison with those by the FSE method at a 1.0 Tesla whole body MRI system. Results: From the analysis, $T_2$ contrast by the PFSE method appears similar to those by the FSE method with the effective echo time in a range of SO-lOOms. Using a mathematical phantom, contrast in the PFSE image appears close to that by the FSE method with the effective echo time of 96ms. From experiment with volunteers, multi-slice $T_2-weighted$ images are obtained by the PFSE method having contrast similar to that of the FSE method with the effective echo time of 96ms. Reconstructed images by the PFSE method show less motion related artifact compared to those by the FSE method. Conclusion: The projection-type FSE imaging acquires multiple radial lines with different angles in polar coordinate in k space using multiple spin echoes. The PFSE method is robust to patient motion or flow, however, it has difficulty in controlling $T_2$ contrast compared to the FSE method. In this paper, it is shown that the PFSE method provides good $T_2$ contrast (${T_2}-weighted$ images) similar to the FSE method by both computer simulation and experiments with volunteers.

  • PDF

Comparison of the Medication Effects between Milnacipran and Pregabalin in Fibromyalgia Syndrome Using a Functional MRI: a Follow-up Study (섬유근통 환자에 대한 Milnacipran과 Pregabalin 약물치료에 대한 기능적 자기공명영상에서의 후속 영향 비교)

  • Kang, Min Jae;Mun, Chi-Woong;Lee, Young Ho;Kim, Seong-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.4
    • /
    • pp.341-351
    • /
    • 2014
  • Purpose : In this study, the medication effects of Milnacipran and Pregabalin, as well known as fibromyalgia treatment medicine, in fibromyalgia syndrome patients were compared through the change of BOLD signal in pain related functional MRI. Materials and Methods: Twenty fibromyalgia syndrome patients were enrolled in this study and they were separated into two groups according to the treatment medicine: 10 Milnacipran (MLN) treatment group and 7 Pregabalin (PGB) treatment group. For accurate diagnosis, all patients underwent several clinical tests. Pre-treated and post-treated fMRI image with block-designed pressure-pain stimulation for each group were obtained to conduct the statistical analysis of paired t-test and two sample t-test. All statistical significant level was less than 0.05. Results: In clinical tests, the clinical scores of the two groups were not significantly different at pre-treatment stage. But, PGB treatment group had lower Widespread Pain Index (WPI) and Brief Fatigue Inventory (BFI) score than those of MLN treatment group at post-treatment stage. In functional image analysis, BOLD signal of PGB treatment group was higher BOLD signal at several regions including anterior cingulate and insula than MLN treatment group at post-treatment stage. Also, paired t-test values of the BOLD signal in MLN group decreased in several regions including insula and thalamus as known as 'pain network'. In contrast, size and number of regions in which the BOLD signal decreased in PGB treatment group were smaller than those of MLN treatment group. Conclusion: This study showed that MLN group and PGB group have different medication effects. It is not surprising that MLN and PGB have not the same therapeutic effects since these two drugs have different medicinal mechanisms such as antidepressants and anti-seizure medication, respectively, and different detailed target of fibromyalgia syndrome treatment. Therefore, it is difficult to say which medicine will work better in this study.

[ $Gd(DTPA)^{2-}$ ]-enhanced, and Quantitative MR Imaging in Articular Cartilage (관절연골의 $Gd(DTPA)^{2-}$-조영증강 및 정량적 자기공명영상에 대한 실험적 연구)

  • Eun Choong-Ki;Lee Yeong-Joon;Park Auh-Whan;Park Yeong-Mi;Bae Jae-Ik;Ryu Ji Hwa;Baik Dae-Il;Jung Soo-Jin;Lee Seon-Joo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.8 no.2
    • /
    • pp.100-108
    • /
    • 2004
  • Purpose : Early degeneration of articular cartilage is accompanied by a loss of glycosaminoglycan (GAG) and the consequent change of the integrity. The purpose of this study was to biochemically quantify the loss of GAG, and to evaluate the $Gd(DTPA)^{2-}$-enhanced, and T1, T2, rho relaxation map for detection of the early degeneration of cartilage. Materials and Methods : A cartilage-bone block in size of $8mm\;\times\;10mm$ was acquired from the patella in each of three pigs. Quantitative analysis of GAG of cartilage was performed at spectrophotometry by use of dimethylmethylene blue. Each of cartilage blocks was cultured in one of three different media: two different culture media (0.2 mg/ml trypsin solution, 1mM Gd $(DTPA)^{2-}$ mixed trypsin solution) and the control media (phosphate buffered saline (PBS)). The cartilage blocks were cultured for 5 hrs, during which MR images of the blocks were obtained at one hour interval (0 hr, 1 hr, 2 hr, 3 hr, 4 hr, 5 hr). And then, additional culture was done for 24 hrs and 48 hrs. Both T1-weighted image (TR/TE, 450/22 ms), and mixed-echo sequence (TR/TE, 760/21-168ms; 8 echoes) were obtained at all times using field of view 50 mm, slice thickness 2 mm, and matrix $256\times512$. The MRI data were analyzed with pixel-by-pixel comparisons. The cultured cartilage-bone blocks were microscopically observed using hematoxylin & eosin, toluidine blue, alcian blue, and trichrome stains. Results : At quantitation analysis, GAG concentration in the culture solutions was proportional to the culture durations. The T1-signal of the cartilage-bone block cultured in the $Gd(DTPA)^{2-}$ mixed solution was significantly higher ($42\%$ in average, p<0.05) than that of the cartilage-bone block cultured in the trypsin solution alone. The T1, T2, rho relaxation times of cultured tissue were not significantly correlated with culture duration (p>0.05). However the focal increase in T1 relaxation time at superficial and transitional layers of cartilage was seen in $Gd(DTPA)^{2-}$ mixed culture. Toluidine blue and alcian blue stains revealed multiple defects in whole thickness of the cartilage cultured in trypsin media. Conclusion : The quantitative analysis showed gradual loss of GAG proportional to the culture duration. Microimagings of cartilage with $Gd(DTPA)^{2-}$-enhancement, relaxation maps were available by pixel size of $97.9\times195\;{\mu}m$. Loss of GAG over time better demonstrated with $Gd(DTPA)^{2-}$-enhanced images than with T1, T2, rho relaxation maps. Therefore $Gd(DTPA)^{2-}$-enhanced T1-weighted image is superior for detection of early degeneration of cartilage.

  • PDF

Susceptibility-Weighted Imaging as a Distinctive Imaging Technique for Providing Complementary Information for Precise Diagnosis of Neurologic Disorder (신경계 질환에 관한 정확한 진단을 위해 다양한 보완 정보를 제공하는 독특한 영상 기법으로서의 자기화율 강조 영상)

  • Byeong-Uk Jeon;In Kyu Yu;Tae Kun Kim;Ha Youn Kim;Seungbae Hwang
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.1
    • /
    • pp.99-115
    • /
    • 2021
  • Various sequences have been developed for MRI to aid in the radiologic diagnosis. Among the various MR sequences, susceptibility-weighted imaging (SWI) is a high-spatial-resolution, three-dimensional gradient-echo MR sequence, which is very sensitive in detecting deoxyhemoglobin, ferritin, hemosiderin, and bone minerals through local magnetic field distortion. In this regard, SWI has been used for the diagnosis and treatment of various neurologic disorders, and the improved image quality has enabled to acquire more useful information for radiologists. Here, we explain the principle of various signals on SWI arising in neurological disorders and provide a retrospective review of many cases of clinically or pathologically proven disease or components with distinctive imaging features of various neurological diseases. Additionally, we outline a short and condensed overview of principles of SWI in relation to neurological disorders and describe various cases with characteristic imaging features on SWI. There are many different types diseases involving the brain parenchyma, and they have distinct SWI features. SWI is an effective imaging tool that provides complementary information for the diagnosis of various diseases.

A Construction of the Multistep Optimal Three-Dimensional Finite Elements for the Mandible Structure Analysis (하악 구조체 분석을 위한 다단계 최적 3 차원 유한 요소 형성)

  • Lee, Hyeong-U;;Lee, Seong-Hwan;Kim, Chang-Heon;Kim, Tae-Yun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.7
    • /
    • pp.1906-1916
    • /
    • 1996
  • For the medical analysis of the three-dimensional structure such as the mandible, it is necessary to reconstruct the structure into the finite number of analyzable elements. The information of the three-dimensional structure can be obtained from the cross-sections of the magnetic resonance image (MRI). A region corresponding to the structure is extracted from the inner part of the cross- section. By the triangulation of the sampled cross-section image, two-dimensional finite elements are generated. Three-dimensional finite elements are constructed by matching the two dimensional finite elements each other in space. In this paper a construction method of the optimal three-dimensional finite elements has been suggested, which uses the adjacent information abstracted from the triangulated two-dimensional finite elements. The elements are classified into the identical property sets by using the adjacent information of the traingulated two-dimensional elements. After applying the multistep matching algorithm to the classified two-dimensional finite elements, the optimal three-dimensional finite elements can be construccted. By analyzing the constructed finite elements, it is possible to get much more useful medical information about the three-dimensional struture of mandible.

  • PDF

A Study of Whiter Matter Fiber Tractography in Young Internet Addiction Disorder using a Brain Diffusion Tensor Magnetic Resonance Imaging (뇌 확산텐서 자기공명영상을 이용한 청소년 인터넷 중독자의 백질 섬유로에 관한 연구)

  • Goo, Eun-Hoe
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.1
    • /
    • pp.7-13
    • /
    • 2016
  • The goal of this study is to investigate corpus callosum and both internal capsule changes with the internet addiction disorder compared to control group using MR diffusion tensor imaging. A total of 22 teenager volunteers who had 10 high-risk group with internet addiction and 12 normal control group were conducted for this study. Imaging was conducted on a 3 T using a EPI sequence. Image evaluation was analysed of the FA, ADC($10^{-3}mm^2/s$), length(mm). We did select ROI for image tracking on corpus callosum of 5 and including 2(internal capsule). The data from these ROIs were compared statistically among the groups using independent t-test, correlation coefficient. There were significant inter-group differences(p<0.05) among FA, ADC($10^{-3}mm^2/s$) and length(mm). And also significantly negative correlations were fond between FA values of corpus callosum and IAD scale(p=0.000). DTI was shown significant changes of FA and ADC, LNF values in IAD compared to control group. Therefore, our results may provided clinical information for brain wite matter functions.

A Study on Selection of Optimal Imaging Diagnostic Device for Cerebral Angiography: Focusing on MRA, CTA, and DSA Imaging Diagnosis Devices (뇌혈관 검사 시 최적의 영상 진단장치 선정에 관한 연구: MRA, CTA, DSA, 영상 진단장치 중심으로)

  • Byun, Jung-Su;Goo, Eun-Hoe
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.637-645
    • /
    • 2017
  • The objective of this study was to find the optimum test device for the cerebral blood vessels by comparing and analyzing the SNR and CNR methods for images of three devices (i.e., MRA, CTA, and DSA). The study targeted 90 patients who underwent cerebral angiography from November 2016 to May 2017. The measuring parts were measured by using Rt MCA, Lt MCA, and ACA Image J. The results of quantitative analysis showed that the mean SNR of MRA, the CNR of MRA, the signal strength of MRA, the mean SNR of CTA, the CNR of CTA, the signal strength of CTA, the SNR of DSA, the CNR of DSA, and the signal strength of DSA were evaluated as 254.87, 178.13, 326.81, 74.75, 62.2, 356.66, 26.85, 25.89, and 4400.69, respectively (p<0.05). As a result, both SNR and CNR methods measured it in the order of MRA>CTA>DSA. Statistical significance was determined by using ANOVA analysis at p<0.05 and Bonferroni method was used as a post-hoc analysis SPSS. In conclusion, the results of this study revealed that the optimum imaging devices were MRA, CTA, and DSA after evaluating randomly selected patients with cerebrovascular disease.

3-Dimensional Computed Tomography of Atlantoaxial Instability in Three Dogs (개에서 컴퓨터단층영상의 3차원 재구성을 통한 환축추골 아탈구 진단 3례)

  • Ahn, Se-Joon;Choi, Soo-Young;Lim, Soo-Ji;An, Ji-Young;Lee, In;Kwon, Young-Hang;Choi, Ho-Jung;Lee, Young-Won
    • Journal of Veterinary Clinics
    • /
    • v.26 no.5
    • /
    • pp.490-494
    • /
    • 2009
  • A 2-year-old Maltese and a 5-month-old Yorkshire terrier were presented with ataxia. Tetraparesis was observed in a 9-year -old Yorkshire terrier. The localizations of the lesions suggested brain or cervical spinal cord by the neurological examination, and the following images was achieved: radiography, axial images of computed tomography (CT), reconstruction image of CT such as multi-planar reformation(MPR) and 3-dimensional(3D) reconstruction and magnetic resonance imaging (MRI). On radiography, the misalignment between atlas (C1) and axis (C2), absent dens of axis, and increased space between the dorsal arch of C1 and spinous process of C2 were found. The discontinuation between dens and body of C2 was identified through axial CT images, and the fragmentation of dens separated from axis was observed through MPR and 3D image in all case. The hyperintense lesions and the spinal cord compression on T2-weighted MR images were represented in a dog with tetraparesis, the others represented only spinal cord compression. Three dogs were diagnosed as atlantoaxial instability (AAI) by dens fracture of C2. The dog with tetraparesis was euthanized due to guarded prognosis. The others were recovered completely. It is difficult to differentiate dens fracture of C2 from abnormal dens such as agenesis and hypoplasia. We thought that CT is very useful to evaluate the dens of C2 and differentiate the causes of AAI, and the reconstruction images of CT such as MPR and 3D make the translation of the fragmented dens or axis of AAI more precisely evaluate.

The Impact of Signal Intensity and Image Distortion Magnetic Resonance Imaging in the Orthopedic Prosthetic Metal (자기공명영상에서 정형보철 금속이 신호강도와 영상왜곡에 미치는 영향)

  • Kim, Hyeong-Gyun;Choi, Seong-Dae
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.321-326
    • /
    • 2012
  • Used as an ingredient in the hospital for orthopedic prosthetic stainless and titanium metal the same size as on the MRI diagnostic value of imaging were compared. Center of images, background high band portion of the video signal is converted into a weighted intensity values Normal images and compared. The area of normal slice and also the distortion of images and cross-sectional imaging of a range of quantitative and sagittal planes were compared. As a result, the periphery high band signal intensity values of Stainless video phantom 2, pig bone 1.8, Titanium imaging of phantom 1.7 has higher value than Normal video pig bone 1.3 times the signal strength rivers. MRI distortion of the shape and the distortions of the range, if the cross-sectional area compared to Normal Slice Stainless case of phantom 65.8 %, pig bone 61.5 %, Titanium distortion phantom 23.1 %, pig bone 38.5 % of the range of community found. In this experiment, as a result, MRI was found to be Titanium more diagnostic value than the specimen with respect to the signal intensity weighted value and low distortion range, Stainless.

Developing a Korean Standard Brain Atlas on the basis of Statistical and Probabilistic Approach and Visualization tool for Functional image analysis (확률 및 통계적 개념에 근거한 한국인 표준 뇌 지도 작성 및 기능 영상 분석을 위한 가시화 방법에 관한 연구)

  • Koo, B.B.;Lee, J.M.;Kim, J.S.;Lee, J.S.;Kim, I.Y.;Kim, J.J.;Lee, D.S.;Kwon, J.S.;Kim, S.I.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.3
    • /
    • pp.162-170
    • /
    • 2003
  • The probabilistic anatomical maps are used to localize the functional neuro-images and morphological variability. The quantitative indicator is very important to inquire the anatomical position of an activated legion because functional image data has the low-resolution nature and no inherent anatomical information. Although previously developed MNI probabilistic anatomical map was enough to localize the data, it was not suitable for the Korean brains because of the morphological difference between Occidental and Oriental. In this study, we develop a probabilistic anatomical map for Korean normal brain. Normal 75 blains of T1-weighted spoiled gradient echo magnetic resonance images were acquired on a 1.5-T GESIGNA scanner. Then, a standard brain is selected in the group through a clinician searches a brain of the average property in the Talairach coordinate system. With the standard brain, an anatomist delineates 89 regions of interest (ROI) parcellating cortical and subcortical areas. The parcellated ROIs of the standard are warped and overlapped into each brain by maximizing intensity similarity. And every brain is automatically labeledwith the registered ROIs. Each of the same-labeled region is linearly normalize to the standard brain, and the occurrence of each legion is counted. Finally, 89 probabilistic ROI volumes are generated. This paper presents a probabilistic anatomical map for localizing the functional and structural analysis of Korean normal brain. In the future, we'll develop the group specific probabilistic anatomical maps of OCD and schizophrenia disease.