DOI QR코드

DOI QR Code

Susceptibility-Weighted Imaging as a Distinctive Imaging Technique for Providing Complementary Information for Precise Diagnosis of Neurologic Disorder

신경계 질환에 관한 정확한 진단을 위해 다양한 보완 정보를 제공하는 독특한 영상 기법으로서의 자기화율 강조 영상

  • Byeong-Uk Jeon (Department of Radiology, Eulji University Hospital) ;
  • In Kyu Yu (Department of Radiology, Eulji University Hospital) ;
  • Tae Kun Kim (Department of Radiology, Eulji University Hospital) ;
  • Ha Youn Kim (Department of Radiology, Eulji University Hospital) ;
  • Seungbae Hwang (Department of Radiology, Chonbuk National University Hospital)
  • 전병욱 (을지대학교병원 영상의학과) ;
  • 유인규 (을지대학교병원 영상의학과) ;
  • 김태건 (을지대학교병원 영상의학과) ;
  • 김하연 (을지대학교병원 영상의학과) ;
  • 황승배 (전북대학교병원 영상의학과)
  • Received : 2020.03.24
  • Accepted : 2020.07.11
  • Published : 2021.01.01

Abstract

Various sequences have been developed for MRI to aid in the radiologic diagnosis. Among the various MR sequences, susceptibility-weighted imaging (SWI) is a high-spatial-resolution, three-dimensional gradient-echo MR sequence, which is very sensitive in detecting deoxyhemoglobin, ferritin, hemosiderin, and bone minerals through local magnetic field distortion. In this regard, SWI has been used for the diagnosis and treatment of various neurologic disorders, and the improved image quality has enabled to acquire more useful information for radiologists. Here, we explain the principle of various signals on SWI arising in neurological disorders and provide a retrospective review of many cases of clinically or pathologically proven disease or components with distinctive imaging features of various neurological diseases. Additionally, we outline a short and condensed overview of principles of SWI in relation to neurological disorders and describe various cases with characteristic imaging features on SWI. There are many different types diseases involving the brain parenchyma, and they have distinct SWI features. SWI is an effective imaging tool that provides complementary information for the diagnosis of various diseases.

자기공명영상 기술의 개발에 따라 다양한 종류의 시퀀스가 개발되어 방사선 진단에 큰 도움이 되었다. 다양한 자기공명영상 시퀀스 중에서 자기화율 강조 영상은 고 공간 분해능 3차원 경사 에코 시퀀스를 발전시킨 것으로 국소 자기장 왜곡에 의한 디옥시헤모글로빈, 페리틴, 헤모시데린 및 골, 광물 검출에 매우 민감하다. 이러한 영상 특징으로 인해 자기화율 강조 영상은 다양한 신경 장애의 진단과 치료에 사용되어 왔으며, 영상 화질이 향상되어 방사선 전문의에게 보다 유용한 정보를 제공할 수 있게 되었다. 다양한 신경 장애에서 발생할 수 있는 자기화율 강조 영상에 나타날 수 있는 다양한 신호의 원리를 설명하고, 독특한 영상의학적 특징을 가진 질환 혹은 물질에 대해 임상적 또는 병리학적으로 진단된 환자들에 관하여 각각의 질병에 맞추어 조사하였다. 또한 자기화율 강조 영상에서 각각의 신경 장애에서 보일 수 있는 영상의학적 특징에 대해 질환의 전반적인 정보를 함께 요약하여 정리하였다. 뇌 실질 및 주변 조직에 생기는 다양한 신경계 질환들은 자기화율 강조 영상에서 뚜렷하게 구분되는 다양한 영상학적 특징을 보인다. 이에 의해 자기화율 강조 영상은 다양한 보조적 정보를 통해 적절한 진단에 도움을 준다.

Keywords

References

  1. Haacke EM, Xu Y, Cheng YC, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn Reson Med 2004;52:612-618
  2. Tong KA, Ashwal S, Obenaus A, Nickerson JP, Kido D, Haacke EM. Susceptibility-weighted MR imaging: a review of clinical applications in children. AJNR Am J Neuroradiol 2008;29:9-17
  3. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 1990;87:9868-9872
  4. Sedlacik J, Lobel U, Kocak M, Loeffler RB, Reichenbach JR, Broniscer A, et al. Attenuation of cerebral venous contrast in susceptibility-weighted imaging of spontaneously breathing pediatric patients sedated with propofol. AJNR Am J Neuroradiol 2010;31:901-906
  5. Sohn CH, Lee HP, Park JB, Chang HW, Kim E, Kim E, et al. Imaging findings of brain death on 3-tesla MRI. Korean J Radiol 2012;13:541-549
  6. International Classification of Headache Disorders. Headache Classification Subcommittee of the International Headache Society. 2nd ed. Cephalalgia 2004; 24(suppl 1):9-160
  7. Karaarslan E, Ulus S, Kurtuncu M. Susceptibility-weighted imaging in migraine with aura. AJNR Am J Neuroradiol 2011;32:E5-E7
  8. Mittal S, Wu Z, Neelavalli J, Haacke EM. Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol 2009;30:232-252
  9. Suzuki J, Takaku A. Cerebrovascular "moyamoya" disease. Disease showing abnormal net-like vessels in base of brain. Arch Neurol 1969;20:288-299
  10. Suzuki J, Kodama N. Moyamoya disease--a review. Stroke 1983;14:104-109
  11. Kuroda S, Houkin K. Moyamoya disease: current concepts and future perspectives. Lancet Neurol 2008;7:1056-1066
  12. Horie N, Morikawa M, Nozaki A, Hayashi K, Suyama K, Nagata I. "Brush Sign" on susceptibility-weighted MR imaging indicates the severity of moyamoya disease. AJNR Am J Neuroradiol 2011;32:1697-1702
  13. Mucke J, Mohlenbruch M, Kickingereder P, Kieslich PJ, Baumer P, Gumbinger C, et al. Asymmetry of deep medullary veins on susceptibility weighted MRI in patients with acute MCA stroke is associated with poor outcome. PLoS One 2015;10:e0120801
  14. Payabvash S, Benson JC, Taleb S, Rykken JB, Hoffman B, Oswood MC, et al. Prominent cortical and medullary veins on susceptibility-weighted images of acute ischaemic stroke. Br J Radiol 2016;89:20160714
  15. Furlan A, Higashida R, Wechsler L, Gent M, Rowley H, Kase C, et al. Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: a randomized controlled trial. Prolyse in acute cerebral thromboembolism. JAMA 1999;282:2003-2011
  16. Cho KH, Kim JS, Kwon SU, Cho AH, Kang DW. Significance of susceptibility vessel sign on T2*-weighted T2*-weighted gradient echo imaging for identification of stroke subtypes. Stroke 2005;36:2379-2383
  17. Allibert R, Billon Grand C, Vuillier F, Cattin F, Muzard E, Biondi A, et al. Advantages of susceptibility-weighted magnetic resonance sequences in the visualization of intravascular thrombi in acute ischemic stroke. Int J Stroke 2014;9:980-984
  18. Flacke S, Urbach H, Keller E, Traber F, Hartmann A, Textor J, et al. Middle cerebral artery (MCA) susceptibility sign at susceptibility-based perfusion MR imaging: clinical importance and comparison with hyperdense MCA sign at CT. Radiology 2000;215:476-482
  19. Stam J. Thrombosis of the cerebral veins and sinuses. N Engl J Med 2005;352:1791-1798
  20. Ferro JM, Canhao P, Stam J, Bousser MG, Barinagarrementeria F; ISCVT Investigators. Prognosis of cerebral vein and dural sinus thrombosis: results of the International Study on Cerebral Vein and Dural Sinus Thrombosis (ISCVT). Stroke 2004;35:664-670
  21. Idbaih A, Boukobza M, Crassard I, Porcher R, Bousser MG, Chabriat H. MRI of clot in cerebral venous thrombosis: high diagnostic value of susceptibility-weighted images. Stroke 2006;37:991-995
  22. Tsui YK, Tsai FY, Hasso AN, Greensite F, Nguyen BV. Susceptibility-weighted imaging for differential diagnosis of cerebral vascular pathology: a pictorial review. J Neurol Sci 2009;287:7-16
  23. Provenzale JM, Kranz PG. Dural sinus thrombosis: sources of error in image interpretation. AJR Am J Roentgenol 2011;196:23-31
  24. Paterakis K, Karantanas AH, Komnos A, Volikas Z. Outcome of patients with diffuse axonal injury: the significance and prognostic value of MRI in the acute phase. J Trauma 2000;49:1071-1075
  25. Adams JH, Doyle D, Ford I, Gennarelli TA, Graham DI, McLellan DR. Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathology 1989;15:49-59
  26. Tao JJ, Zhang WJ, Wang D, Jiang CJ, Wang H, Li W, et al. Susceptibility weighted imaging in the evaluation of hemorrhagic diffuse axonal injury. Neural Regen Res 2015;10:1879-1881
  27. Ducros A. Reversible cerebral vasoconstriction syndrome. Lancet Neurol 2012;11:906-917
  28. Ducros A, Boukobza M, Porcher R, Sarov M, Valade D, Bousser MG. The clinical and radiological spectrum of reversible cerebral vasoconstriction syndrome. A prospective series of 67 patients. Brain 2007;130:3091-3101
  29. Singhal AB, Hajj-Ali RA, Topcuoglu MA, Fok J, Bena J, Yang D, et al. Reversible cerebral vasoconstriction syndromes: analysis of 139 cases. Arch Neurol 2011;68:1005-1012
  30. Miller TR, Shivashankar R, Mossa-Basha M, Gandhi D. Reversible cerebral vasoconstriction syndrome, part 2: diagnostic work-up, imaging evaluation, and differential diagnosis. AJNR Am J Neuroradiol 2015;36:1580-1588
  31. Haacke EM, DelProposto ZS, Chaturvedi S, Sehgal V, Tenzer M, Neelavalli J, et al. Imaging cerebral amyloid angiopathy with susceptibility-weighted imaging. AJNR Am J Neuroradiol 2007;28:316-317
  32. Walker DA, Broderick DF, Kotsenas AL, Rubino FA. Routine use of gradient-echo MRI to screen for cerebral amyloid angiopathy in elderly patients. AJR Am J Roentgenol 2004;182:1547-1550
  33. Mantyh PW, Ghilardi JR, Rogers S, DeMaster E, Allen CJ, Stimson ER, et al. Aluminum, iron, and zinc ions promote aggregation of physiological concentrations of beta-amyloid peptide. J Neurochem 1993;61:1171-1174
  34. Kim TH, Lee JH. Application of iron related magnetic resonance imaging in the neurological disorders. Ann Clin Neurophysiol 2014;16:1-7
  35. El-Koussy M, Schroth G, Gralla J, Brekenfeld C, Andres RH, Jung S, et al. Susceptibility-weighted MR imaging for diagnosis of capillary telangiectasia of the brain. AJNR Am J Neuroradiol 2012;33:715-720
  36. Boukobza M, Enjolras O, Guichard JP, Gelbert F, Herbreteau D, Reizine D, et al. Cerebral developmental venous anomalies associated with head and neck venous malformations. AJNR Am J Neuroradiol 1996;17:987-994
  37. Fushimi Y, Miki Y, Togashi K, Kikuta K, Hashimoto N, Fukuyama H. A developmental venous anomaly presenting atypical findings on susceptibility-weighted imaging. AJNR Am J Neuroradiol 2008;29:E56
  38. Toh CH, Wei KC, Chang CN, Hsu PW, Wong HF, Ng SH, et al. Differentiation of pyogenic brain abscesses from necrotic glioblastomas with use of susceptibility-weighted imaging. AJNR Am J Neuroradiol 2012;33:1534-1538
  39. Robinson RJ, Bhuta S. Susceptibility-weighted imaging of the brain: current utility and potential applications. J Neuroimaging 2011;21:e189-e204