• 제목/요약/키워드: magnetic oxide

검색결과 515건 처리시간 0.025초

Enrichment of valuable elements from vanadium slag using superconducting HGMS technology

  • He, Sai;Yang, Chang-qiao;Li, Su-qin;Zhang, Chang-quan
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권1호
    • /
    • pp.17-21
    • /
    • 2017
  • Vanadium slags is a kind of vanadiferous solid waste from steelmaking process. It not only occupies land, pollutes environment, but also leads to waste of resources. Based on the difference of magnetic susceptibility of different particles caused by their chemical and physical properties from vanadium slag, a new technology, superconducting high gradient magnetic separation was investigated for separation and extraction of valuable substances from vanadium slag. The magnetic concentrate was obtained under optimal parameters, i.e., a particle size -200 mesh, a magnetic flux density of 0.8 T, a slurry concentration of 5 g/L, an amount of steel wools of 25 g and a slurry flow velocity of 2 L/min. The content of $Fe_2O_3$ in concentrate could be increased from 39.6% to 55.0% and $V_2O_5$ from 2.5% to 4.0%, respectively. The recovery rate is up to 42.9%, and the vanadium slag has been effectively reused.

Study on Magnetic Behavior of Zn1-xMnxO Films Grown on Si and α-Al2O3 Substrates by Sol-gel Method and Powders

  • Kim, Young-Mi;Park, Il-Woo
    • 한국자기공명학회논문지
    • /
    • 제12권1호
    • /
    • pp.26-32
    • /
    • 2008
  • We report on the ferromagnetic characteristics of $Zn_{1-x}Mn_xO$ films (x = 0.3) prepared by sol-gel method on the silicon and (0001) ${\alpha}-Al_2O_3$ substrates at the annealing temperature of 700$^{\circ}C$. Magnetic measurements show that Curie temperature ($T_C$) and the coercive field ($H_C$) for the film on the silicon are about 32 K and about 275 Oe, while those for that on the sapphire are about 32 K and 425 Oe, respectively. Energy dispersive spectroscopy and transmission electron microscopy measurements suggest that ferromagnetic precipitates originated by manganese oxide compound formed at the interfaces of the both substrates may be responsible for the observed ferromagnetic behavior of the films. Electron paramagnetic resonance study of the powders up to the concentration of x=0.15 supports the result.

Iron oxide nanopowder synthesized by electroerosion dispersion (EED) - Properties and potential for microwave applications

  • Halbedel, Bernd;Prikhna, Tatiana;Quiroz, Pamela;Schawohl, Jens;Kups, Thomas;Monastyrov, Mykola
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1410-1414
    • /
    • 2018
  • Magnetic nanoparticles (MNP) have attracted considerable interest in many fields of research and applied science due to their impressive properties. In the past, especially biomedical problems have promoted the development of MNPs. For technical applications e.g. wastewater treatment and absorption of electromagnetic waves, the existing synthesis approaches are too expensive and/or the producible quantities are too low. In this work we present a method for simple preparation of size-controlled magnetic iron oxide nanoparticles by electroerosion dispersion (EED) of carbon steel in water. We describe the synthesis method, the laboratory installation and discuss the structural, chemical and electromagnetic properties of the synthetized EED powders as well as their applicability for microwave absorption compared to other available ferrite powders.

Fe3O4/CoFe2O4 superlattices; MBE growth and magnetic properties

  • Quang, Van Nguyen;Shin, Yooleemi;Duong, Anh Tuan;Nguyen, Thi Minh Hai;Cho, Sunglae;Meny, Christian
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.242-242
    • /
    • 2016
  • Magnetite, Fe3O4, is a ferrimagnet with a cubic inverse spinel structure and exhibits a metal-insulator, Verwey, transition at about 120 K.[1] It is predicted to possess as half-metallic nature, 100% spin polarization, and high Curie temperature (850 K). Cobalt ferrite is one of the most important members of the ferrite family, which is characterized by its high coercivity, moderate magnetization and very high magnetocrystalline anisotropy. It has been reported that the CoFe2O4/Fe3O4 bilayers represent an unusual exchange-coupled system whose properties are due to the nature of the oxide-oxide super-exchange interactions at the interface [2]. In order to evaluate the effect of interface interactions on magnetic and transport properties of ferrite and cobalt ferrite, the CoFe2O4/Fe3O4 superlattices on MgO (100) substrate have been fabricated by molecular beam epitaxy (MBE) with the wave lengths of 50, and $200{\AA}$, called $25{\AA}/25{\AA}$ and $100{\AA}/100{\AA}$, respectively. Streaky RHEED patterns in sample $25{\AA}/25{\AA}$ indicate a very smooth surface and interface between layers. HR-TEM image show the good crystalline of sample $25{\AA}/25{\AA}$. Interestingly, magnetization curves showed a strong antiferromagnetic order, which was formed at the interfaces.

  • PDF

삼원계 산화 절연층을 가진 자기터널접합의 자기·구조적 특성에 관한 연구 (Magnetoresistance and Structural Properties of the Magnetic Tunnel Junction with Ternary Oxide Barrier)

  • 박성민;이성래
    • 한국자기학회지
    • /
    • 제15권4호
    • /
    • pp.231-235
    • /
    • 2005
  • Al에 Zr과 Nb 또는 Zr과 Ti을 첨가한 삼원계 산화층을 절연층으로 사용한 자기터널접합(Magnetic Tunnel Junction, MTJ)에서, 각 원소의 비율에 따른 자기적 특성과 절연층의 미세구조 특성을 연구하였다. $(ZrNb)_{0.1}Al_{0.9}$$(ZrTi)_{0.1}Al_{0.9}$ 삼원계 산화 절연층을 가진 자기터널접합의 자기저항비는 Nb, 또는 Ti과 Zr의 첨가 비율이 1 : 1에 가까워질수록 낮아졌으며, Zr과 비교해 Nb 또는 Ti의 첨가량이 많아질수록 자기터널접합의 저항이 감소하였다. 이는 ZrNbAl, ZrTiAl 삼원계 합금 박막은 비정질인 ZrAl 이원계 합금박막과는 달리 다결정체로서 불균일한 산화 절연층을 형성하여 자기저항 및 전기적 특성을 감소시키는 역할을 하기 때문이다. 그러나 삼원계 산화 절연층의 경우 이원계 경우보다 낮은 터널 저항을 특성을 나타내었으며 이는 Nb 또는 Ti이 벤드갭 내에 국부적 에너지 준위를 만들어 에너지 장벽이 감소된 효과로 추측된다.

나노 산화층을 사용한 자기터널접합의 특성 (Characteristics of Magnetic Tunnel Junctions Incorporating Nano-Oxide Layers)

  • 추인창;전병선;송민성;이성래;김영근
    • 한국자기학회지
    • /
    • 제16권2호
    • /
    • pp.136-139
    • /
    • 2006
  • 자기터널접합은 일반적으로 $250^{\circ}C$ 이상의 온도에서 터널자기저항비의 저하가 발생하는데 이는 반강자성체로 사용된 IrMn 중 Mn이 강자성체인 CoFe 및 터널배리어로의 내부확산에 기인한다. 자기터널접합의 열적 안정성을 향상시키기 위하여 나노산화층을 삽입하여 Mn의 확산을 제어하였다. CoNbZr 4/CoFe 10/IrMn 7.5/CoFe 3/터널배리어/CoFe 3/CoNbZr 2(nm)와 같은 자기터널접합을 기본구조로 하여 각각의 층에 나노산화층을 삽입하여 열적안정성 및 전자기적 특성을 비교 분석 하였다. 나노산화층의 삽입에 의해 터널자기저항비, 자기터널접합의 표면 평활도 및 열적안정성이 향상되었다.

저온 증착된 불소도핑 주석 산화 박막의 광학적·전기적 특성 (Optical and Electrical Properties of Fluorine-Doped Tin Oxide Prepared by Chemical Vapor Deposition at Low Temperature)

  • 박지훈;전법주
    • 한국재료학회지
    • /
    • 제23권9호
    • /
    • pp.517-524
    • /
    • 2013
  • The electrical and optical properties of fluorine-doped tin oxide films grown on polyethylene terephthalate film with a hardness of 3 using electron cyclotron resonance plasma with linear microwave of 2.45 GHz of high ionization energy were investigated. Fluorine-doped tin oxide films with a magnetic field of 875 Gauss and the highest resistance uniformity were obtained. In particular, the magnetic field could be controlled by varying the distribution in electron cyclotron deposition positions. The films were deposited at various gas flow rates of hydrogen and carrier gas of an organometallic source. The surface morphology, electrical resistivity, transmittance, and color in the visible range of the deposited film were examined using SEM, a four-point probe instrument, and a spectrophotometer. The electromagnetic field for electron cyclotron resonance condition was uniformly formed in at a position 16 cm from the center along the Z-axis. The plasma spatial distribution of magnetic current on the roll substrate surface in the film was considerably affected by the electron cyclotron systems. The relative resistance uniformity of electrical properties was obtained in film prepared with a magnetic field in the current range of 180~200A. SEM images showing the surface morphologies of a film deposited on PET with a width of 50 cm revealed that the grains were uniformly distributed with sizes in the range of 2~7 nm. In our experimental range, the electrical resistivity of film was able to observe from $1.0{\times}10^{-2}$ to $1.0{\times}10^{-1}{\Omega}cm$ where optical transmittance at 550 nm was 87~89 %. These properties were depended on the flow rate of the gas, hydrogen and carrier gas of the organometallic source, respectively.

Diagnostic value of magnetic resonance imaging using superparamagnetic iron oxide for axillary node metastasis in patients with breast cancer: a meta-analysis

  • Lee, Ru Da;Park, Jung Gu;Ryu, Dong Won;Kim, Yoon Seok
    • 고신대학교 의과대학 학술지
    • /
    • 제33권3호
    • /
    • pp.297-306
    • /
    • 2018
  • Objectives: Identification of axillary metastases in breast cancer is important for staging disease and planning treatment, but current techniques are associated with a number of adverse events. This report evaluates the diagnostic accuracy of superparamagnetic iron oxide (SPIO)-enhanced magnetic resonance imaging (MRI) techniques for identification of axillary metastases in breast cancer patients. Methods: We performed a meta-analysis of previous studies that compared SPIO enhanced MRI with histological diagnosis after surgery or biopsy. We searched PubMed, Ovid, Springer Link, and Cochrane library to identify studies reporting data for SPIO enhanced MRI for detection of axillary lymph node metastases in breast cancer until December 2013. The following keywords were used: "magnetic resonance imaging AND axilla" and "superparamagnetic iron oxide AND axilla". Eligible studies were those that compared SPIO enhanced MRI with histological diagnosis. Sensitivity and specificity were calculated for every study; summary receiver operating characteristic and subgroup analyses were done. Study quality and heterogeneity were also assessed. Results: There were 7 publications that met the criteria for inclusion in our meta-analysis. SROC curve analysis for per patient data showed an overall sensitivity of 0.83 (95% Confidence interval (CI): 0.75-0.89) and overall specificity of 0.97 (95% CI: 0.94-0.98). Overall weighted area under the curve was 0.9563. Conclusions: SPIO enhanced MRI showed a trend toward high diagnostic accuracy in detection of lymph node metastases for breast cancer. So, when the breast cancer patients has axillary metastases histologically, SPIO enhanced MRI may be effective diagnostic imaging modality for axillary metastases.