• Title/Summary/Keyword: magnetic measurements

Search Result 777, Processing Time 0.03 seconds

자성나노유체의 기-액 2상유동을 이용한 에너지 하베스팅에 관한 고찰

  • Lee, Won-Ho;Kim, Cheol-Su;Lee, Won-Seop;Lee, Jong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.381.2-381.2
    • /
    • 2016
  • It was known conceptually that ferrofluid or air driven flows induced by waste heat energy could generate electric power in surrounding windings by changing the magnetic flux with time through the colis. In the last decade, a ferrohydrodynamics energy harvesting system based on magnetorheology has been investigated experimentally and numerically. However, it was focused on the movement of air droplets or nanoparticles in the ferrofluid, therefore the electric power generated in the device was not enough to use practically. In this study, we developed the electrical generation concept based on magnetic particle flows for harvesting large amount of electric power and conducted measurements and computations for verifying the concept of electrical generation. In order to obtain a significant amount of electrical energy by using magnetic particle flows, it was critical to control the magnetization direction of magnetic nanoparticles in the fluid by a permanent magnet and to change the magnetic flux with time by air bubbles when the fluid flows in a millimeter-sized channel passed through surrounding windings.

  • PDF

Validation of Magnetic Resonance Velocimetry by Turbulent Pipe Flow (자기공명유속계를 이용한 난류 유동장 가시화)

  • Lee, Jeesoo;Song, Simon;Cho, Jee-Hyun
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.1
    • /
    • pp.35-42
    • /
    • 2014
  • Magnetic resonance velocimetry (MRV) is a versatile flow visualization technique using magnetic resonance imaging machine developed for the medical purpose. Recently, MRV is often utilized to analyze engineering flows due to its superior features of MRV such as capabilities of measuring flows with complicated, opaque flow geometry unlike optical techniques, 3-dimensional volumetric velocity vectors within a few hours, and etc. The purpose of this study was to validate the MRV data and evaluate the accuracy of the mean velocity profiles that we acquired for a turbulent flow in a circular pipe using a MR machine installed in Korea Basic Science Institute, Ochang, Korea. In addition, we briefly describe a procedure of parameter optimization for the operation of MRV. The results indicate that the MRV measurements provided well resolved mean velocity fields with a quite reasonable accuracy according to the inner and outer layer scaling laws of the turbulent pipe flows.

$^{11}B$ Nuclear Magnetic Resonance Study of Calcium-hexaborides

  • Mean, B.J.;Lee, K.H.;Kang, K.H.;Lee, Moo-Hee;Lee, J.S.;Cho, B.K.
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.7 no.2
    • /
    • pp.80-88
    • /
    • 2003
  • We have performed $^{11}$ B nuclear magnetic resonance (NMR) measurements to microscopically investigate an electronic structure of the ferromagnetic state in three different compositions of calcium-hexaboride single crystals. Although the crystal structure of Ca $B_{6}$ is cubic and three NMR lines may be expected for the nuclear spin 3/2 of $_{11}$ B, a larger number of NMR resonance peaks have been observed. The frequency and intensity of those peaks distinctively changes depending on the angle between crystalline axis and magnetic field. Analyzing this behavior, we find that the electric field gradient(EFG) tensor at the boron has its principal axis perpendicular to the six cubic faces with a quadrupole resonance frequency $v_{Q}$ 600 kHz. Even though the magnetization data highlight the ferromagnetic hysteresis, $^{11}$ B NMR linewidth data show no clear microscopic evidence of the ferromagnetic state in three different compositions of Ca $B_{6}$ single crystals.s.

  • PDF

Magnetic $T_c$ Measurements of Composite Superconductors for a Standard Method (복합초전도체의 자기적 임계온도 측정의 표준화연구)

  • Lee K. W;Kim M. S;Kim D. H;Lee S. G
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.24-31
    • /
    • 2004
  • Magnetic $T_{c}$ of composite superconductors has been studied for providing a standard method. Various magnetization-temperature curves of NbTi, $Nb_3$Sn and Bi-2223 wires were measured using a SQUID magnetometer. Magnetization-temperature curve of zero-field-cooled procedure showed larger values than fie Id-cooled procedure. To obtain higher resolution near the onset temperature, we employed a two-field-direction method which measures a magnetization-temperature curve of a specimen first in positive and then negative fields. Analytical comparison of the magnetic $T_{c}$, with the resistive T$_{c}$ was accomplished for three specimens. The magnetic $T_{c}$/ mettled showed more detailed information on superconducting state of a specimen than the resistive$T_{c}$/ method. We have also studied the field dependence of the magnetic $T_{c}$ from 5 Oe to 120 Oe, however, no significant difference on field strength was found in our three specimensns

  • PDF

The Effects of Aging Conditions on the Crystallization of $Fe_{78}B_{13}Si_9$ Metallic Glass (시효조건에 다른 $Fe_{78}B_{13}Si_9$ 비정질 합금의 결정화 연구)

  • Lee, Won-Jae;Kim, Ki-Uk;Mlin, Bok-Ki;Song, Jae-Sung;Hong, Jin-Wan;Kang, Won-Koo;Kim, Yoon-Dong
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.291-294
    • /
    • 1989
  • The effect of isothermal aging on the crystallization of $Fe_{78}B_{13}Si_9$ metallic glass has been investigated by electrical resistivity, X-ray measurements, bending test, thermal analysis and transmission electron microscpy. Amouphous $Fe_{78}B_{13}Si_9$ alloy was annealed isothermally for 5 to 1200 min. between $300^{\circ}C$ and $540^{\circ}C$. It has been found that close relation between relative resistivity and X-ray diffraction pattern showed. The crystalline peaks of ${\alpha}$-(Fe, Si) and $Fe_2B$ are detected by X-ray experiment. The crystalline phases observed by TEH show ${\alpha}$-(Fe, Si) and $Fe_2B$ with dendritic and cylindrical morphology, respectively. It has been also found that the embrittleness of aged samples rapidly increased with the crystallization and was shown before the crystallization.

  • PDF

Analysis of Permanent Magnet Synchronous Generator for Vortex Induced Vibration Hydrokinetic Energy Applications Based on Analytical Magnetic Field Calculations

  • Choi, Jang-Young;Shin, Hyun-Jae;Choi, Jong-Su;Hong, Sup;Yeu, Tae-Kyeong;Kim, Hyung-Woo
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • This paper deals with the performance analysis and estimation of the electrical parameters of a permanent magnet synchronous generator (PMSG) for hydrokinetic energy conversion applications using vortex induced vibration (VIV). The analytical solutions for the magnetic fields produced by permanent magnets (PMs) and stator winding currents are obtained using a 2D polar coordinate system and a magnetic vector potential. An analytical expression for the 2D permeance is also derived, which takes into account stator skew effects. Based on these magnetic field solutions and the 2D permeance function, electrical circuit parameters such as the backemf constant and the air-gap inductance are obtained analytically. The performances of the PMSG are investigated using the estimated electrical circuit parameters and an equivalent circuit (EC). All analytical results are validated extensively using 2D finite element (FE) analyses. Experimental measurements for parameters such as the back-emf and inductance are also presented to confirm the analyses.

Superconducting and Magnetic Properties of the $(Ru_{1-x}Ta_x)Sr_2(Gd_{1.4}Ce_{0.6})Cu_2O_z$ System ($(Ru_{1-x}Ta_x)Sr_2(Gd_{1.4}Ce_{0.6})Cu_2O_z$ 계의 초전도 및 자기적 특성)

  • Lee, H.K.
    • Progress in Superconductivity
    • /
    • v.13 no.3
    • /
    • pp.163-168
    • /
    • 2012
  • The effects of Ta substitution on the superconducting and magnetic properties of the $(Ru_{1-x}Ta_x)Sr_2(Gd_{1.4}Ce_{0.6})Cu_2O_z(0{\leq}x{\leq}0.5)$ system have been investigated. The X-ray diffraction measurements indicate that the Ta ion replaces Ru sites up to x = 0.4. It is found that the Ta substitution for Ru significantly reduces the weak-ferromagnetic component of the field-cooled magnetic susceptibility without an appreciable change of room temperature thermopower at lower Ta doping level below x = 0.2. The resistive transition temperature tends to decrease monotonically from 27 K for the x = 0 sample to 16 K (9 K) for the x = 0.4 (x = 0.5) sample. These results suggest that superconductivity of the $(Ru_{1-x}Ta_x)Sr_2(Gd_{1.4}Ce_{0.6})Cu_2O_z$ compound is not significantly affected by the magnetic state of the Ru sublattice. The experimental results are discussed in connection with previous reports on the effects of Nb substitution.

Crystal growth from melt in combined heater-magnet modules

  • Rudolph, P.;Czupalla, M.;Dropka, N.;Frank-Rotsch, Ch.;KieBling, F.M.;Klein, O.;Lux, B.;Miller, W.;Rehse, U.;Root, O.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.5
    • /
    • pp.215-222
    • /
    • 2009
  • Many concepts of external magnetic field applications in crystal growth processes have been developed to control melt convection, impurity content and growing interface shape. Especially, travelling magnetic fields (TMF) are of certain advantages. However, strong shielding effects appear when the TMF coils are placed outside the growth vessel. To achieve a solution of industrial relevance within the framework of the $KRISTMAG^{(R)}$ project inner heater-magnet modules(HMM) for simultaneous generation of temperature and magnetic field have been developed. At the same time, as the temperature is controlled as usual, e.g. by DC, the characteristics of the magnetic field can be adjusted via frequency, phase shift of the alternating current (AC) and by changing the amplitude via the AC/DC ratio. Global modelling and dummy measurements were used to optimize and validate the HMM configuration and process parameters. GaAs and Ge single crystals with improved parameters were grown in HMM-equipped industrial liquid encapsulated Czochralski (LEC) puller and commercial vertical gradient freeze (VGF) furnace, respectively. The vapour pressure controlled Czochralski (VCz) variant without boric oxide encapsulation was used to study the movement of floating particles by the TMF-driven vortices.

Role of Radio Frequency and Microwaves in Magnetic Fusion Plasma Research

  • Park, Hyeon K.
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.169-177
    • /
    • 2017
  • The role of electromagnetic (EM) waves in magnetic fusion plasma-ranging from radio frequency (RF) to microwaves-has been extremely important, and understanding of EM wave propagation and related technology in this field has significantly advanced magnetic fusion plasma research. Auxiliary heating and current drive systems, aided by various forms of high-power RF and microwave sources, have contributed to achieving the required steady-state operation of plasmas with high temperatures (i.e., up to approximately 10 keV; 1 eV=10000 K) that are suitable for future fusion reactors. Here, various resonance values and cut-off characteristics of wave propagation in plasmas with a nonuniform magnetic field are used to optimize the efficiency of heating and current drive systems. In diagnostic applications, passive emissions and active sources in this frequency range are used to measure plasma parameters and dynamics; in particular, measurements of electron cyclotron emissions (ECEs) provide profile information regarding electron temperature. Recent developments in state-of-the-art 2D microwave imaging systems that measure fluctuations in electron temperature and density are largely based on ECE. The scattering process, phase delays, reflection/diffraction, and the polarization of actively launched EM waves provide us with the physics of magnetohydrodynamic instabilities and transport physics.

The Measurement of Electromagnetic Wave in Power Cable Tunnel of Underground Utility Tunnel (전력구 내 전자기파에 대한 작업 환경 측정)

  • Kang, Dae Kon;Park, Jai Hak
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Electromagnetic measurements of the power cable tunnel were conducted from August 10 to 20, 2018, in the ${\bigcirc}{\bigcirc}$ city underground utility tunnel. During this period, the average temperature was $31.89^{\circ}C$ and the humidity was 67.56% in power cable tunnel. As a result of the electromagnetic measurement, the highest electric field was 25.3 V/m and the magnetic flux density was $42.6{\mu}T$. The average electric field was 18.56 V/m and the magnetic flux density was $29.32{\mu}T$ in the power cable tunnel. As a result of comparison with the electric equipment technical standard, the electric field in the power cable tunnel was 0.5% of the electric equipment standard and 35.2% of the magnetic flux density. It's similar value that electric field is about robotic vacuum(15.53 V/m), and magnetic flux density is similar value about capsule- type coffee machine ($23.07{\mu}T$). The number of cable lines and the size of the electromagnetic waves were not proportional to each other through comparison of cable lines in the power cable tunnel. It was confirmed that 154 kV, rather than 22.9 kV, could have a greater influence on occupational.