Superconducting and Magnetic Properties of the (Ru_{1-x}Ta_x)Sr₂(Gd_{1.4}Ce_{0.6})Cu₂O_z System

H. K. Lee*

Kangwon National University, Chuncheon, Korea) (Received 02 March 2012; revised 23 March 2012; accepted 30 March 2012)

(Ru_{1-x}Ta_x)Sr₂(Gd_{1.4}Ce_{0.6})Cu₂O_z 계의 초전도 및 자기적 특성 이호근*

Abstract

The effects of Ta substitution on the superconducting and magnetic properties of the $(Ru_{1-x}Ta_x)$ $Sr_2(Gd_{1.4}.Ce_{0.6})Cu_2O_z$ ($0 \le x \le 0.5$) system have been investigated. The X-ray diffraction measurements indicate that the Ta ion replaces Ru sites up to x = 0.4. It is found that the Ta substitution for Ru significantly reduces the weak-ferromagnetic component of the field-cooled magnetic susceptibility without an appreciable change of room temperature thermopower at lower Ta doping level below x = 0.2. The resistive transition temperature tends to decrease monotonically from 27 K for the x = 0 sample to 16 K (9 K) for the x = 0.4 (x = 0.5) sample. These results suggest that superconductivity of the $(Ru_{1-x}Ta_x)$ $Sr_2(Gd_{1.4}.Ce_{0.6})Cu_2O_z$ compound is not significantly affected by the magnetic state of the Ru sublattice. The experimental results are discussed in connection with previous reports on the effects of Nb substitution.

 $\mathit{Keywords}$: Ta substitution, $(Ru_1Ta)Sr_2(Gd,Ce)_2Cu_2O_z$, superconductivity, magnetic property

I. 서론

초전도 특성과 강자성 특성은 상호 배타적인 특성으로서 두 특성이 공존하기는 매우 어렵다 고 알려져 왔다 [1]. 그러나 RuSr₂RCu₂O₈(Ru-1212)와 RuSr₂(R_{2-y}Ce_y)Cu₂O₁₀(Ru-1222) (R은 주 로 Gd, Eu 또는 Sm임) 계에서 임계온도(T_c) 약 50 K 이하인 초전도 특성과 자기천이온도(T_m) 가 100 ~ 180 K인 약한 강자성 특성이 공존함 이 보고되면서 [2, 3] 이들 물질에 대해 활발한 연구가 수행되어 왔다. Ru-1212 계의 구조는 잘 알려져 있는 CuSr₂RCuO₇(Cu-1212) 계의 CuO 체인 층이 RuO₂ 층으로 대치된 구조이며, Ru-1222의 구조는 Ru-1212 구조의 R 층이 (R, Ce)₂O₂ 층으로 대치된 구조이다. 이들 자성 초 전도체의 조성에서 Ru 대신 여러 다른 원소의 치환연구를 통해 약한 강자성특성은 RuO₂ 층에 기인하는 것으로 분석되고 있다. (Ru, M)-1222 계의 경우 M = Nb [4, 5], Mo [6], Fe [7], Co [8], Sn [9], Pb [10] 등의 원소 치환연구가 수행되었다. 이들 원소치환 연구결과에 의해 치환 량이 증

^{*}Corresponding author. Fax : +82 33 257 9689 e-mail : hklee221@kangwon.ac.kr

가될수록 자기천이온도가 모두 감소하는 경향 을 보이며, 초전도 임계온도는 Ru 자리 Fe, Co, Sn 및 Pb 치환의 경우 각각 13 % [7], 10 % [8], 10 % [9], 50 % [10]가 치환되면 초전도 특성이 사라짐이 밝혀졌다. 그러나 Nb 및 Mo 치환의 경우 [6]는 Ru 대신 약 50 % 까지 치환하더라 도 여타 원소들의 치환효과와는 달리 임계온도 의 변화가 상대적으로 매우 적음이 알려져 있 다. Lee 등 [5]은 (Ru_{1-X}Nb_x)Sr₂(Gd_{1.4}Ce_{0.6})Cu₂O_z 계의 경우 비저항 측정결과 x = 0의 경우 저항 이 0이 되는 온도는 27 K에서 x = 0.5의 경우 24 K로 단조하게 감소함을 보고했다. 그러나 Cardoso 등 [11]은 $(Ru_{1-x}Nb_x)Sr_2(Gd_{1,4}Ce_{0,6})Cu_2O_z$ 계의 경우 x = 0에서 x = 0.25로 증가되면 임계 온도가 25 K에서 약 29 K로 증가되며, 다시 x = 0.5로 증가되면 임계온도가 약 26 K로 감소됨 을 보고했다. 이들은 초기 Nb 치환으로 임계온 도가 증가되는 것은 Nb 치환으로 홀 농도가 약간 감소하는 효과보다. Ru 치환에 따른 자기 질서도 온도가 감소하는 효과로 인해 상대적으 로 임계온도가 증가될 수 있다고 설명했으며, 이를 바탕으로 상기 Gd에 근거한 Ru-1222 계 에서 초전도 특성과 자기적 특성이 강하게 상 호 작용하고 있다고 주장했다. Ru-1222 계에 Zn을 치환한 경우 [12] 여타 구리산화물 초전 도체의 경우처럼 임계온도는 감소하나 자기적 특성의 변화가 거의 없음을 보여주며 이는 Ru-1222 계의 경우 자기적 특성과 초전도 특성 간의 상호작용이 매우 적음을 시사해주었다. 초전도 특성과 자기적 특성의 상호작용 유무 및 그 특성을 잘 이해하는 것은 초전도 특성을 자기적 특성으로 제어하려 할 때 매우 유용하 게 활용될 수 있을 것이다. 본 연구에서는 Nb 와 같은 원자가를 가지는 Ta를 Ru 자리에 치 환하여 임계온도 및 자기적 특성의 변화를 체 계적으로 연구하여 초전도 특성과 자기적 특성 간의 상호작용을 검토하고 Nb 치확의 경우와 비교했다.

Ⅱ. 실험방법

시편은 고상반응법으로 합성했으며 3N 이상 의 고순도 RuO₂, Ta₂O₅, SrCO₃, Gd₂O₃, CeO₂ 및 CuO 분말을 이용해 (Ru_{1-x}Ta_x)Sr₂(Gd_{1.4}Ce_{0.6})Cu₂O_z 의 명목구성으로 혼합한 후 잘 갈고 먼저 공기 중에서 960 ℃, 20 h, 질소 분위기에서 1010 ℃, 16 h, 산소분위기에서 1060 ℃, 70 h 열처리했다. 1060 ℃ 열처리 후 상온으로 온도를 천천히 내 렸다. 고온의 열처리 과정 중 각 온도에서의 열처리 전 시편은 매번 다시 갈고 패럿 형태로 성형했다.

시편의 상 형성 및 구조 확인은 X-선 회절 장치를 이용했으며, 비저항 특성은 4 단자 접 점법으로 상온에서 부터 약 10 K까지 10 mA의 전류로 측정되었다. 상온의 열기전력은 미분 방법 [13]으로 측정했다. 자기 감수율 측정은 SQUID 장치로 측정했으며, zero-field-cooled (ZFC) 측정에서는 자기장을 가하지 않은 상태 에서 먼저 온도를 약 4 K로 낮춘 후 자기장을 가하여 온도를 올리며 측정되었으며, fieldcooled (FC) 측정에서는 상온에서 먼저 자기장 을 가한 상태로 온도를 낮춘 후 다시 온도를 올리며 측정했다. 이 때 가해진 자기장은 20 Oe 였다.

Ⅲ. 실험결과 및 논의

Fig. 1은 (Ru_{1-X}Ta_x)Sr₂(Gd_{1.4}Ce_{0.6})Cu₂O_z 구성 시 편의 X-선 회절 분석 결과를 보여준다. 시편의 X-선 회절 피이크는 정방(tetragonal)구조의 밀 러지수로 매김 할 수 있었으며, Cu의 치환 량 x가 0.4까지 증가될 때 관측되는 X-선 회절 양 상은 Cu를 치환하지 않은 시편의 경우와 거의 유사하며, 단일상의 특성을 보여준다. 그러나 x = 0.5 이상이 되면 불순물상이 증가됨을 보여 주었다. Fig. 1의 X-선 회절 결과를 이용하여 최 소 자승법으로 분석된 격자상수의 값이 Fig. 2 에 나타나 있다.그림에서 보는 바와 같이 Ta 의 치확 량이 증가될수록 a 및 c 축 격자상수 가 증가됨을 보여준다. 이 결과는 Ta⁺⁵의 이온 반지름(0.64 Å, CN = 6)이 Ru⁺⁵의 이온반지름 (0.565 Å, CN = 6)보다 크고 Ta이 Ru 자리에 치 환되는 것으로 설명된다 [14].

Fig. 3에는 (Ru_{1-x}Ta_x)Sr₂(Gd_{1.4}Ce_{0.6})Cu₂O_z 시편 들의 비저항 측정 결과가 나타나 있다. 정상상 태의 비저항은 초전도천이 시작온도까지 온도

Fig. 1. Powder XRD patterns for $(Ru_{1-x}Ta_x)Sr_2(Gd_{1.4}Ce_{0.6})$ Cu_2O_z samples.

Fig. 2. Variation of the a and c lattice parameters with Ta content x in $(Ru_{1-x}Ta_x)Sr_2(Eu_{1.34}Ce_{0.66})Cu_2O_z$ samples.

Fig. 3. Resistivity data for $(Ru_{1-x}Ta_x)Sr_2(Gd_{1.4}Ce_{0.6})Cu_2O_z$ samples.

가 감소할수록 증가되는 특성을 보여주며, 이 는 보통 시편의 홀 농도가 최적 상태에 비해 상대적으로 적을 때 관측되어오고 있다. Fig. 3 의 결과는 Ta의 치환 량이 증가 될수록 저항 이 0이 되는 임계온도가 감소함을 보여주며, x = 0, 0.2, 0.4 그리고 0.5 일 때 각각 27 K, 20 K, 16 K 그리고 약 9 K 였다. 또한 천이가 시작되 는 온도도 감소하는 경향을 보임을 알 수 있다. 이 결과는 Ta 대신 Nb가 치환된 (Ru_{1-x}Nb_x)Sr₂ (Gd_{1.4}Ce_{0.6})Cu₂O_z 계의 경우 임계온도가 27 K (x = 0)에서 24 K (x = 0.5)로 상대적으로 적게 변화 된 결과와 대비된다.

Fig. 4의 결과는 (Ru_{1-x}Ta_x)Sr₂(Gd_{1.4}Ce_{0.6})Cu₂O_z 시편들의 자기감수율 특성을 보여준다. 그림에 나타나 있는 바와 같이 ZFC 측정결과와 FC 측정결과 간에 자기이력 특성이 있다. x = 0의 경우, FC 측정 결과는 강자성과 유사한 천이 특성을 보이며, Ta의 치환량 x가 증가할수록 자기감수율이 크게 감소함을 보여주며, 이는 Ru-1222 계의 자기적인 특성이 Ru와 직접 연 관됨을 시사한다. 특히 x = 0.3 이상의 경우 저 온에서 자기모멘트가 온도가 감소할수록 증가 되는 상자성 자기감수율을 보이는데 이는 종전 의 연구에 의해 Gd의 상자성에 기인함이 알려 져 있다 [5]. Ru-1222 계의 자기 천이온도는 보 통 FC 자기감수율이 급격히 증가되는 온도로 정의되며 Fig. 4의 결과는 Ta 치환 량이 x = 0에 서 x = 0.2로 증가하는 동안 자기감수율의 크기 및 자기천이 온도가 급격히 감소함을 보여준다. 또한 Ta의 치환 량이 증가될수록 ZFC 측정에 의한 반자성 특성은 명확히 관측되나 FC 측정 에 의한 마이스너 효과는 관측되지 않았다. 이 는 (Ru_{1-x}Nb_x)Sr₂(Gd_{1.4}Ce_{0.6})Cu₂O₂의 경우 처럼 Gd의 상자성의 크기가 초전도 특성에 의한 반 자성의 크기 보다 저온에서 크게 나타나기 때 문으로 설명된다. 그러므로 Ta 치환에 따른 (Ru_{1-x}Ta_x)Sr₂(Gd_{1.4}Ce_{0.6})Cu₂O₂ 계의 자기적 특성 변화는 Lee 등 [5]에 의해 보고된 (Ru_{1-x}Nb_x)Sr₂ (Gd_{1.4}Ce_{0.6})Cu₂O₂ 계와 매우 유사함을 알 수 있 다.

Fig. 4. The zero-field-cooled (ZFC) and field-cooled (FC) dc magnetic susceptibility curves of $(Ru_{1-x}Ta_x)Sr_2$ $(Gd_{1,4}Ce_{0,6})Cu_2O_z$ samples with x = 0, 0.1, 0.2, 0.3 and 0.4.

Fig. 5에는 Ta 치환에 따른 (Ru_{1-X}Ta_x)Sr₂(Gd₁₄ Ce06)Cu2Oz 계의 상온 열기전력 변화를 보이며, 상온 열기전력이 증가될수록 홀 농도가 감소하 는 상관관계 [15]로부터 Ta 치환에 따라 임계 온도가 감소하는 것은 홀 농도의 감소에 기인 함을 알 수 있다. 특히 (Ru_{1-x}Ta_x)Sr₂(Gd₁₄Ce₀₆) Cu_2O_z 경우가 $(Ru_{1-x}Nb_x)Sr_2(Gd_{1,4}Ce_{0,6})Cu_2O_z$ 경 우에 비해 Ru 자리 치환 량에 따른 임계온도 가 보다 급격히 감소하는 것은 Ta 치환의 경 우가 Nb 치환의 경우 보다 치환 량이 약 0.3 이상에서 홀 농도가 상대적으로 크게 감소하는 것에 기인하는 것으로 설명된다. Nb 치환의 경 우 [4], 치환 량 x가 0, 0.25 및 0.5 일 때 상온 열기전력은 각각 16.2 µV, 21.9 µV, 23.6 µV 였으 며, Ta 치환의 경우 x가 0, 0.2 및 0.5 일 때 상 온 열기전력은 17.2 μV, 20.0 μV 및 29.2 μV 였 다.

Fig. 5. Variation of the room temperature thermopower with Ta content x in $(Ru_{1-x}Ta_x)Sr_2(Eu_{1.34}Ce_{0.66})Cu_2O_z$ samples.

본 연구의 결과는 Fig. 4에 나타나 있는 바와 같이 Ta 치환 량이 x = 0에서 x = 0.2까지 증가 하는 동안 자기천이온도는 급격히 감소하고, Fig. 5에 나타나 있는 바 처럼 홀 농도의 변화 는 상대적으로 적음을 보이고 있다. 만약 Ru 층에 의한 자기장이 초전도특성을 크게 저해한 다면 홀 농도의 변화가 적은 Ta 치환영역에서 초전도임계온도의 향상이 기대되나 비저항 측 정결과는 임계온도가 감소하는 경향을 보여주 었다. 그러므로 본 연구의 결과는 자기천이온 도의 감소로 인해 초전도 임계온도가 증가된다 는 Cardoso 등 [11]의 주장과는 상반되며, RuO₂ 층의 자기적 특성이 Nb 또는 Ta 치환으로 약 화되더라도 임계온도변화에 주는 효과가 매우 적으며, 두 층간의 상호작용이 적음을 나타낸 다고 볼 수 있다. Ta 치환의 경우가 Nb 치환의 경우 보다 홀 농도 감소가 보다 크다는 것은 두 원소가 모두 +5 가의 원자가를 갖는다는 점을 고려하면, Ta 치환 량이 증가되면 Nb 치 환의 경우보다 산소량의 감소가 약간 클 수 있 음을 시사하는 것으로 보인다. Fig. 2의 Ta 치환 에 따른 격자 상수 변화로부터 a 격자상수 변 화율 은 0.00028 Å/(%Ta)이며, c 격자상수변화율 은 0.0018 Å/(%Ta)이었다. 이에 비해 Nb를 치환 한 (Ru_{1-X}Nb_x)Sr₂(Gd_{1.4}Ce_{0.6})Cu₂O_z 계 [5]의 경우 는 a 및 c 격자상수의 변화율은 각각 0.00024 Å/(%Nb) 및 0.0018 Å/(%Nb)이었다. 그러므로 Ta 치환의 경우가 Nb 치환의 경우보다 a 격자 상수를 더 크게 증가시킴을 알 수 있고 a 격자 상수의 크기는 보통 산소량이 증가할수록 감소 하는 경향이 있음 [16]을 고려하면 원소 치환 에 따른 격자상수의 변화도 Ta 치환의 경우가 Nb 치환의 경우 보다 산소량의 감소가 클 것 임을 나타낸다고 볼 수 있다.

IV. 결론

(Ru_{1-x}Ta_x)Sr₂(Gd_{1.4}Ce_{0.6})Cu₂O_z (x = 0 - 0.5) 구성 시편을 고상반응법으로 합성하여 Ta 치환에 따른 상 형성, 초전도 및 자기적 특성을 조사 하고 Nb 치환의 경우와 비교했다. X-선 회절 특성은, Ta이 Ru 대신 적어도 x = 0.4까지 치환 될 수 있음을 보여주었다. Ta 치환의 경우 치 환 량이 증가될수록 Ru 자리 Nb 치환의 경우 와 유사하게 FC 측정으로 관측되는 Ru-1222 계의 약한 강자성 성분이 크게 감소되었다. 비 저항 측정으로 분석된 초전도 임계온도변화는 Ta 치환 량이 증가될수록 감소하는 경향을 보 였으며, Nb 치환의 경우보다 크게 감소됨이 관 측되었다. 이 결과는 치환에 따른 홀 농도의 변화로 설명될 수 있으며, Ta 치환의 경우가 Nb 치환의 경우보다 치환에 따른 산소량의 변 화가 상대적으로 큼을 시사해 주었다. 본 연구 의 결과는 Ta 치환으로 RuO₂ 층의 자기적 특 성이 약화되더라도 이로 인한 임계온도변화는 적으며, Lee 등에 의해 보고된 Nb 치환의 경우 와 유사하게 RuO₂ 층과 CuO₂ 층간의 직접적인 상호작용은 예상 보다 적음을 의미하고 있다.

감사의 글

본 연구는 한국과학재단의 지원(KRF-2009-0075747)을 받았으며, 실험수행에는 배수민군 이 일부 실험에 도움을 주었다. X-선 회절 측 정에서는 강원대학교 공동실험실습관의 장치가 이용되었다. 또한 SQUID 측정은 한국기초과학 지원연구원에서 수행되었다.

References

- E. B. Sonin and I. Felner, "Spontaneous vortex phase in a superconducting weak ferromaghet", Phys. Rev. B57, R14000-R14003 (1998) and therein references.
- [2] I. Felner, U. Asaf, Y. Levi and O. Millo, "Coexistence of magnetism and superconductivity in $R_{1.4}Ce_{0.6}$. $RuSr_2Cu_2O_{10-\delta}$ (R = Eu and Gd)", Phys. Rev. **B55**, R3374-R3377 (1997).
- [3] C. Bernhard, J. L. Tallon, Ch. Niedermayer, Th. Blasius, A. Golnik, E. Brucher, R. K. Kremer, D. R. Noakes, C. E. Stronach and E. J. Ansaldo, "Coexistence of ferromagnetism and superconductivity in the hybrid ruthenate-cuprate compound RuSr₂GdCu₂O₈ studied by muon spin rotation and dc magnetization", Phys. Rev. B 59, 14099-14107 (1999).
- [5] H. K. Lee and G. V. M. Williams, "Effect of Nb doping on superconducting and magnetic properties of RuSr₂(Gd_{1.5-y}Eu_yCe_{0.5})Cu₂O_z", Physica C 415, 172-178 (2004).

- [6] V. P. S. Awana, R. Lal, H. Kishan, A. V. Narlikar, M. Peurla and R.Laiho, "Experimental study of the magnetosuperconductor RuSr₂Eu_{1.5}Ce_{0.5}Cu₂O_{10-δ}: Effect of Mo doping on magnetic behavior and T_c variation", Phys. Rev. B73, 014517(1)-014517(6) (2006).
- [7] I. Felner and U. Asaf, "Superconductivity and weak ferromagnetism in Eu_{1.4}Ce_{0.6}Ru_{1-x}Fe_xSr₂Cu₂O_{10-δ}", Physica C 292, 97-103 (1997).
- [8] V. P. S. Awana, H. Kishan, O. Eshkenazi, I. Felner, Rajeev Rawat, V. Ganesan and A. V. Narlikar, "Experimental study of magneto-superconductor RuSr₂Eu_{1.5}Ce_{0.5}Cu₂O_{10-δ} : peculiar effect of Co doping on complex magnetism and T_c variation", J. Phys: Condens. Matter 19, 026203(1)-026203(14) (2007).
- [9] N. Balchev, K. Nenkov, G. Mihova, B. Kunev and J. Pirov, "Superconducting and magnetic properties of Sn-doped Ru-1222", Physica C 467, 174-178 (2007).
- [10] L. Shi, G. Li, Y. Pu, X. D. Zhang, S. J. Feng and X.-G. Li, "Effect of Pb doping on the superconducting and magnetic resonance properties of Ru-1222", Materials Letters 57, 3919-3923 (2003).

- [11] C. A. Cardoso, F. M. Araujo-Moreira, V. P. S. Awana, H. Kishan and O. F. de Lima, "Study of the superconducting and magnetic properties of niobium doped RuSr₂Gd_{1.5}Ce_{0.5}Cu₂O_{10-δ} ruthenocuprates", Physica C 460-462, 442-443 (2007).
- [12] S. K. Goh, G. V. M. Williams and H. K. Lee, "The effect of substituents on magnetic order and superconductivity in $RuSr_2R_{2-y}Ce_yCu_2O_{10+\delta}$ (R = Eu, Gd)", Current Appl. Phys. 6, 515-519 (2006).
- H. K. Lee, "Superconductivity in the (Pb,V)Sr₂ (Ca,Tb)Cu₂O_z system", J. Korean Phys. Soc. 36, 384-386 (2000).
- [14] R. D. Shannon, "Revised Effective Radii and Systematic studies of interatomic distances in halides and chalcogenides", Acta Cryst. A32, 751-767 (1976).
- [15] J. L. Tallon, C. Bernhard, H. Shaked, R. L. Hitterman and J. D. Jorgenson, "Generic superconducting phase behavior in High-T_c cuprates: T_c variation with hole concentration in YBa₂Cu₃O_{7-Z}", Phys. Rev. B51, 12911-12914 (1995).
- [16] J. L. Wagner, P. G. Radaelli, D. G. Hinks, J. D. Jorgensen, J. F. Mitchell, B. Dadrowski, G. S. Knapp and M. A. Beno, "Structure and superconductivity of HgBa₂CuO_{4+δ}", Physica C 210, 447-454 (1993).