• Title/Summary/Keyword: magnetic material

Search Result 1,956, Processing Time 0.04 seconds

Superconducting magnetic Foce (초전도에 작용하는 자기 Force)

  • Lee, Sang-Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.349-350
    • /
    • 2009
  • Superconducting magnetic bearing and rotating system were developed by utilizing the high magnetization YBaCuO superconductor. The pellets prepared by quasi-melt process had a high magnetic levitation force and a high magnetic attractive force. The shaft also could be moves its position and orientation of the rotating axis freely. Is is essential to enhance the materials properties and to improve the system design for the application of the system to industrial purpose.

  • PDF

The Magnetic Sensor with Lateral Field Emitter Arrays (평면구조의 전계방출형 자기 센서)

  • 남명우;김시헌;남태철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.124-128
    • /
    • 1995
  • We have fabricated the vacuum magnetic device with a lateral field emitter arrays constructed on n-Si wafer, and investigated its magnetic characteristics. The device is consited to tip-arrayed emitter. gate and split-anode, The fabricated vacuum magnetic device has showed a good linearity of magnetic field and a high sensitivity compared with the conventional semiconductor magnetic device.

  • PDF

The history of IFMFC - The accumulated knowledge and experience of the magnetic force control with IFMFC

  • Watanabe, Tsuneo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.6-9
    • /
    • 2016
  • The history of IFMFC (International Forum on Magnetic Force Control) shows the usefulness of the magnetic force control in the fields of the environment and material resource in Japan, Korea and China. The IFMFC started in 2010 and has been organized in every year. This paper shows the application of the magnetic force control in each countries with the accumulated knowledge and experience of the magnetic force control with IFMFC.

Characteristics of a Tunable Microstrip Bandpass Filter Under the Influence of Magnetic Field

  • Chow, Hwang-Cherng;Chatterjee, P.;Lin, Kuei-Hung;Feng, Wu-Shiung
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.275-280
    • /
    • 2017
  • A magnetic-field tunable 2.4 GHz microwave bandpass filter having insertion loss < -5dB on an FR4 substrate with the flaky magnetic material was designed and characterized. The tunability in the designed bandpass filter was achieved by adhering soft magnetic materials on top of the device. This soft magnetic material can be composed of ferromagnetic substance or ferrimagnetic substance. The performance of the designed bandpass filter under its influence is investigated. The frequency offset ratio changes over 30 %. There is over 20 % change in the center frequency towards the lower frequency region due to this application. These magnetic material layers achieved the center frequency shift and bandwidth extension without actually changing the original structure of the device.

Selective Etching of Magnetic Layer Using CO/$NH_3$ in an ICP Etching System

  • Park, J.Y.;Kang, S.K.;Jeon, M.H.;Yeom, G.Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.448-448
    • /
    • 2010
  • Magnetic random access memory (MRAM) has made a prominent progress in memory performance and has brought a bright prospect for the next generation nonvolatile memory technologies due to its excellent advantages. Dry etching process of magnetic thin films is one of the important issues for the magnetic devices such as magnetic tunneling junctions (MTJs) based MRAM. CoFeB is a well-known soft ferromagnetic material, of particular interest for magnetic tunnel junctions (MTJs) and other devices based on tunneling magneto-resistance (TMR), such as spin-transfer-torque MRAM. One particular example is the CoFeB - MgO - CoFeB system, which has already been integrated in MRAM. In all of these applications, knowledge of control over the etching properties of CoFeB is crucial. Recently, transferring the pattern by using milling is a commonly used, although the redeposition of back-sputtered etch products on the sidewalls and the low etch rate of this method are main disadvantages. So the other method which has reported about much higher etch rates of >$50{\AA}/s$ for magnetic multi-layer structures using $Cl_2$/Ar plasmas is proposed. However, the chlorinated etch residues on the sidewalls of the etched features tend to severely corrode the magnetic material. Besides avoiding corrosion, during etching facets format the sidewalls of the mask due to physical sputtering of the mask material. Therefore, in this work, magnetic material such as CoFeB was etched in an ICP etching system using the gases which can be expected to form volatile metallo-organic compounds. As the gases, carbon monoxide (CO) and ammonia ($NH_3$) were used as etching gases to form carbonyl volatiles, and the etched features of CoFeB thin films under by Ta masking material were observed with electron microscopy to confirm etched resolution. And the etch conditions such as bias power, gas combination flow, process pressure, and source power were varied to find out and control the properties of magnetic layer during the process.

  • PDF

Technical Trend of Multi-function for Nano-magnetic Material (다기능성 나노자성복합소재 기술동향)

  • Kim, Yu-Sang
    • Journal of Surface Science and Engineering
    • /
    • v.45 no.1
    • /
    • pp.43-52
    • /
    • 2012
  • Recently, it has been developed for Eco-environment, Super light, Multi-functional nano materials. As needed mobile parts in Smart phone or TV, computer, information communication for high pass signal, multi-function, Magnetic thin film materials have been developed. As last, magnetic powder, sintered and sputtering parts were thick and low purity than electroplating layer, low pass signal and noise were resulted, vibrated TV screen. Because chemical complex temperature was high and ununiform surface layer, it has been very difficult for data pass in High Frequency (GHz) area. Large capacity data pass is used to GHz. Above GHz, signal pass velocity is dependent on Skin Effect of surface layer. If surface layer is thick or ununiform, attachment is poor, low pass signal and cross talk, noise are produced and leaked. It has been reported technical trend of Electrochemically plating and Surface treatment of Metal, Polymer, Ceramic etc. by dispersion/complex for Multi functional nano-magnetic material in this paper.

Ultra-Soft Magnetic Properties in Nanocrystalline $Fe_81B_11Nb_7Cu_1$Alloy

  • Lee, Heebok;Lee, Kyeong-Jae;Kim, Yong-Kook;Yoon, Sung-Ho;Kim, Taik-Kee;Yu, Seong-Cho
    • Journal of Magnetics
    • /
    • v.5 no.3
    • /
    • pp.102-105
    • /
    • 2000
  • The extremely soft magnetic behaviors in the nanocrystalline $Fe_81B_11Nb_7Cu_1$ alloy annealed at 450 $\circ C$ and 550 $\circ C$ for 1 hour in a vacuum were investigated by means of the magnetoimpedance (MI) effect and the incremental permeability. Because the MI effect can be obtained only in ultra-soft magnetic materials, the improvement of magnetic softness by proper thermal treatment was carefully monitored by the MI effect for all annealed samples. The changes of the incremental permeability as a function of an external field were also measured to verify the magnetic softness along with the MI measurement.

  • PDF

Ultra-Soft Magnetic Properties in Nanocrystalline $Fe_{81}B_{11}Nb_7Cu_1$ Alloy

  • Lee, Heebok;Lee, Kyeong-Jae;Kim, Yong-Kook;Yoon, Sung-Ho;Kim, Taik-Kee;Yu, Seong-Cho
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.466-472
    • /
    • 2000
  • The extremely soft magnetic behaviors in the nanocrystalline Fe$_{81}$B$_{11}$Nb$_{7}$Cu$_{1}$ alloy annealed at 450 $^{\circ}C$ and 550 $^{\circ}C$ for 1 hour respectively in a vacuum were obtained, and examined by means of the magnetoimpedance(MI) effect and the incremental permeability. Because the MI effect can be obtained only in ultra-soft magnetic materials, the improvement of magnetic softness by proper thermal treatment was carefully monitored by the MI effect for all annealed samples. The changes of the incremental permeability as a function of an external field were also measured to verify the magnetic softness along with the MI measurement.ent.

  • PDF

Standardization of Polishing Work by MAGIC Polishing Tool (MAGIC 숫돌에 의한 연마작업의 표준화)

  • Cho, Jong-Rae;Lee, Sang-Tea;Jung, Yoon-Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.39-48
    • /
    • 2005
  • As the industrial development is accelerated, a new machining process and system are keenly required to achieve super precision surface finish. Especially to get ground surface finish fer complicated and narrow inner shape of molds, it is impossible with the existing methods so that a new method is being required to be developed. A new material, called Magic(MAGnetic Intelligent Compounds), is finally made and it is called Magic machining that uses this material. There is a way to make a material as follows, the mixture of magnetic particles, bonding material and particles of abrasive grain should be melt down by proper heat, and then this mixture put in a mold and cool down in magnetic field which has a uniform direction. This new polishing method is spotlighted as an excellent solution to the existing problems. However it hasn't reported any study about the influence of the machining conditions of polishing velocity, amplitude and polishing pressure to the surface roughness yet. This study would examine closely the influence of polishing conditions of the Magic polishing tool to the surface finish to decide the optimum polishing condition and to standardize the Magic polishing work.