Browse > Article
http://dx.doi.org/10.4283/JMAG.2017.22.2.275

Characteristics of a Tunable Microstrip Bandpass Filter Under the Influence of Magnetic Field  

Chow, Hwang-Cherng (Department of Electronic Engineering, Chang Gung University)
Chatterjee, P. (Department of Electronic Engineering, Chang Gung University)
Lin, Kuei-Hung (Department of Electronic Engineering, Chang Gung University)
Feng, Wu-Shiung (Department of Electronic Engineering, Chang Gung University)
Publication Information
Abstract
A magnetic-field tunable 2.4 GHz microwave bandpass filter having insertion loss < -5dB on an FR4 substrate with the flaky magnetic material was designed and characterized. The tunability in the designed bandpass filter was achieved by adhering soft magnetic materials on top of the device. This soft magnetic material can be composed of ferromagnetic substance or ferrimagnetic substance. The performance of the designed bandpass filter under its influence is investigated. The frequency offset ratio changes over 30 %. There is over 20 % change in the center frequency towards the lower frequency region due to this application. These magnetic material layers achieved the center frequency shift and bandwidth extension without actually changing the original structure of the device.
Keywords
band pass filter; magnetic field; microstrip;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. J. Chen, T. H. Huang, L. S. Chen, J. H. Horng, and M. P. Houng, Microw. Opt. Technol. Lett. 48, 639 (2006).   DOI
2 H. Shaman, Microw. Opt. Technol. Lett. 54, 1319 (2012).   DOI
3 K. Rabbi, L. Athukorala, C. Panagamuwa, J. C. Vardaxoglou, and D. Budimir, Microw. Opt. Technol. Lett. 55, 1331 (2013).   DOI
4 G.-M. Yang, J. Lou, J. Wu, M. Liu, G. Wen, Y. Jin, and N. X. Sun, in Microwave Symposium Digest (MTT), 2011 IEEE MTT-S International (2011) pp. 1-4.
5 P. W. Wong and I. C. Hunter, IEEE Trans. Microw. Theory Tech. 57, 3070 (2009).   DOI
6 C. S. Tsai and G. Qiu, IEEE Trans. Magn. 45, 656 (2009).   DOI
7 T.-Y. Yun and K. Chang, IEEE Trans. Microw. Theory Tech. 50, 1303 (2002).   DOI
8 A. Tatarenko, V. Gheevarughese, and G. Srinivasan, Electron. Lett. 42, 540 (2006).   DOI
9 B. K. Kuanr, D. Marvin, T. Christensen, R. Camley, and Z. Celinski, Appl. Phys. Lett. 87, 222506 (2005).   DOI
10 A. Golaszewski, M. Zukocinski, and A. Abramowicz, in Microwave Techniques (COMITE), 2015 Conference on (2015) pp. 1-4.
11 B. Kapilevich, Microw. J. 50, 106 (2007).
12 M. Lauda, J. Fuzer, P. Kollar, M. Streckova, R. Bures, J. Kovac, M. Batková, and I. Batko, J. Magn. Magn. Mater. 411, 12 (2016).   DOI
13 D. J. Griffiths, Introduction to Electrodynamics, ed: AAPT (2005).