• Title/Summary/Keyword: magnetic hysteresis

Search Result 370, Processing Time 0.028 seconds

Degradation Evaluation of Mechanical Properties for 12Cr Ferrite Heat Resisting Steel by Reversible Permeability (가역투자율에 의한 12Cr 페라이트 내열강의 역학적 물성의 열화평가)

  • Ryu, Kwon-Sang;Kim, Min-Gi;Nahm, Seung-Hoon;Kim, Chung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.464-470
    • /
    • 2010
  • The integrity of the industrial equipment in use under high temperature and high pressure must be assessed by regularly measuring the degraded mechanical properties during service time. In order to nondestructively monitor the degraded mechanical properties of industrial equipment, a measuring method of the reversible permeability(RP) using surface type probe is presented. The method for measuring the RP is based on that RP is the differential value of hysteresis loop. The RP is exactly the foundation hatmonics induced in a detecting coil measured by lock-in amplifier tuned to a frequency of the alternating perturbing magnetic field. The peak of RP is measured around the coercive force. Steel material used in this work was 12Cr ferritic heat resisting steel. The eleven kinds of samples aged during different times under same temperature ($700^{\circ}C$) were prepared. Peak interval of reversible permeability(PIRP), Vickers hardness, and tensile strength measured for the aged samples decreased abruptly for short aging time (below 500 h), but the change became small at a long aging time. Vickers hardness and tensile strength linearly decreased as RIRP decreased, so the degraded mechanical properties of 12Cr ferritic heat resisting steel could be nondestructively evaluated by measuring RIRP.

Microstructures and Magnetic Properties of Multiferroic BiFeO3 Thin Films Deposited by RF Magnetron Sputtering Method (RF 마그네트론 스퍼터링법으로 증착된 Multiferroic BiFeO3 박막의 미세구조 및 자기적 특성)

  • Song, Jong-Han;Nam, Joong-Hee;Kang, Dae-Sik;Cho, Jung-Ho;Kim, Byung-Ik;Choi, Duck-Kyun;Chun, Myoung-Pyo
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.6
    • /
    • pp.222-227
    • /
    • 2010
  • $BiFeO_3$ (BFO) thin films were deposited on Pt/Ti/$SiO_2$/Si(100) substrates by RF magnetron sputtering method at room temperature. The influence of the flow rate of $O_2$ gas on the preparation of $BiFeO_3$ thin films was studied. XRD results indicate that the $BiFeO_3$ thin films were crystallized to the perovskite structure with the presence of small amount of impurity phases. The flow rate of $O_2$ gas has great affect on the microstructures and magnetic properties of $BiFeO_3$ thin films. As flow rate of $O_2$ gas increased, roughness and grain size of the thin films increased. $BiFeO_3$ thin films exhibited weak ferromagnetic behavior at room temperature. The PFM images revealed correlation between the surface morphology and the piezoresponse, indicating that the piezoelectric coefficient is related to microstructure.

Study on the Annealing Effect and Magnetic Properties of a Zn0.7Mn0.3O Film (열처리 효과에 따른 Zn0.7Mn0.3O박막의 자기 특성 연구)

  • Kim, Y.M.;Kim, Y.;Yoon, M.;Park, C.S.;Lee, Y.S.;Jeon, M.S.;Park, I.W.;Park, Y.J.;Lyou, Jong H.;Kim, S.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.4
    • /
    • pp.155-159
    • /
    • 2003
  • We report on the annealing effect and ferromagnetic characteristics of Zn$_{0.7}$Mn$_{0.3}$O film prepared by sol-gel method on the silicon (100) substrate using field emission-scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), X-ray diffractometry (XRD) and superconducting quantum interference device (SQUID) magnetometry. Magnetic measurements show thatZn$_{0.7}$Mn$_{0.3}$O films exhibit ferromagnetism at 5 K revealing the coercive field of ∼110 Oe for as grown sample and 360, 1035 Oe for samples annealed at 700, 800 $^{\circ}C$, respectively. Our experimental evidence suggests that ferromagnetic precipitates of a manganese oxide may be responsible for the observed ferromagnetic behaviors of the film.he film.

Electromagetic Wave Absorbing Properties of $Ni_{0.5}-Zn_{0.4}-X_{0.1}{\cdot}Fe_2O_4$(X=Cu, Mg, Mn)-Rubber Composite ($Ni_{0.5}-Zn_{0.4}-X_{0.1}{\cdot}Fe_2O_4$(X=Cu, Mg, Mn)-Rubber Composite의 전파흡수특성에 관한 연구)

  • Im, Hui-Dae;Yun, Guk-Tae;Lee, Chan-Gyu
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1234-1239
    • /
    • 1999
  • Electromagnetic wave asorbing properties of the $Ni_{0.5}-Zn_{0.4}-X_{0.1}{\cdot}Fe_2O_4$, where X was replaced by substitution elements Cu, Mg, Mn, have been studied. The structure, shape, size and magnetic properties of the $Ni_{0.5}-Zn_{0.4}-X_{0.1}{\cdot}Fe_2O_4$ were analyzed by XRD, SEM, VSM. The relative complex permittivity, permeability, and electromagnetic wave absorbing properties were measured by Network Analyzer. The structure, shape, size and magnetization value of the $Ni_{0.5}-Zn_{0.4}-X_{0.1}{\cdot}Fe_2O_4$ were found to be similar in spite of substitution elements. The coercive force and hysteresis-loss showed maximum value when Mg was substituted for X. The dielectric loss(${\varepsilon}_r"/{\varepsilon}_r'$) was found to be maximum value when Mn was substituted for X. Also the magnetic loss(${\mu}_r"/{\mu}_r'$} was found to be maximum with Cu substitution. The electromagnetica wave absorbing property of the $Ni_{0.5}-Zn_{0.4}-X_{0.1}{\cdot}Fe_2O_4$-Rubber composite with 4mm thickness was excellent as over - 40dB at 9GHz, and the $Ni_{0.5}-Zn_{0.4}-X_{0.1}{\cdot}Fe_2O_4$-Rubber composite with 8mm thickness was over-40dB at 2GHz. Those composites also showed superior microwave absorbing properties.

  • PDF

Mössbauer Studies of the Magnetic Properties in Ba-ferrite Single Crystal (Ba-Ferrite 단결정의 자기적 특성에 관한 뫼스바우어 분광학적 연구)

  • Sur, J.C.;Gee, S.H.;Hong, Y.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.60-64
    • /
    • 2007
  • Ba-Ferrite single crystals were prepared and characterized by X-ray, SEM and Mossbauer spectroscopy. The single crystal layers was cut in the c-axis and radiated to the surface by ${\gamma}-rays$ for Mossbauer spectroscopy. We found out that the spin states in Fe atoms were parallel to the ${\gamma}-rays$ direction. The temperature dependence of the hyperfine field is almost similar to that of powder samples. The crystal structure is a Magnetoplumbite without any other phases and the lattice parameters are found out with $a_0=5.892{\AA},\;b_0=5.892{\AA},\;c_0=23.198{\AA}$. $M\"{o}ssbauer$ spectrum in single crystal have 5 sets off absorption lines in each Fe site when the ${\gamma}-rays$ have the same radiation direction with the c-axis in the crystal, which mean that the whole crystal bulk formed only one crystal and same spin direction. The hysteresis curve shows the saturation moment and coercive force of 70.71 emu/g and 320 Oe respectively.

Structural and Magnetic Properties of Fe Doped CuO (Fe 첨가된 CuO의 구조적, 자기적 특성)

  • Park, Young-Ran;Kim, Kwang-Joo;Park, Jae-Yun;Ahn, Geun-Young;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.34-39
    • /
    • 2006
  • Pure and Fe-doped CuO thin-film and powder samples were prepared using a sol-gel method. Undoped CuO films exhibited monoclinic structure and p-type electrical conductivity $(\~10^{-2}\;{\Omega^{-1}\;cm^{-1}$ due to copper deficiency. On the other hand, CuO: Fe films were found to be insulating and Li doping on the films led to a restoration of p-type conductivity and a ferromagnetic hysteresis behaviour at room temperature. The observed properties far the CuO : Fe, Li films can be explained in terms of hole creation by substitution of $Li^+$ for $Cu^{2+}$ sites and mediation of long-range interactions between $Fe^{3+}$ ions by the $Li^+$-induced defect states. CuO: Fe powders exhibited a ferromagnetism at room temperature with its strength being dependent on post-annealing temperature. Mossbauer measurements on the CuO: Fe films and powders revealed that the octahedral $Cu^{2+}$ sites are mostly substituted by $Fe^{3+}$ ions.

Mössbauer Studies of Manganese Iron Oxide Nanoparticles (망간-철산화물 나노입자의 뫼스바우어 분광 연구)

  • Hyun, Sung-Wook;Shim, In-Bo;Kim, Chul-Sung;Kang, Kyung-Su;Park, Chu-Sik
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.24-27
    • /
    • 2008
  • We have prepared $MnFe_2O_4$ nanoparticles with polyol method. The crystallographic and magnetic properties were measured by using X-ray diffraction(XRD), vibrating sample magnetometer(VSM) and $M\"{o}ssbauer$ spectroscopy. The high resolution transmission electron microscope(HRTEM) shows uniform nanoparticle-sizes with $6{\sim}8$ nm. The crystal structure is found to be single-phase cubic spinel with space group of Fd3m. The lattice constant of $MnFe_2O_4$ nanparticles is determined to be $8.418{\pm}0.001{\AA}$. $M\"{o}ssbauer$ spectrum of $MnFe_2O_4$ nanparticles at room temperature(RT) shows a superparamagnetic behavior. In VSM analysis, the diagnosis of the superparamagnetic behavior is also shown in hysteresis loop at RT. $M\"{o}ssbauer$ spectrum at 4.2K shows that the well developed two sextets are with different hyperfine field $H_{hfA}=498$(A-site) and $H_{hfB}=521$(B-site) kOe.

CoFe2O4 Films Grown on (100) MgO Substrates by a rf Magnetron Sputtering Method ((100) MgO 기판에 성장한 CoFe2O4 박막의 물리적 및 자기적 특성에 관한 연구)

  • Lee, Jae-Gwang;Chae, Kwang-Pyo;Lee, Young-Bae
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.2
    • /
    • pp.140-143
    • /
    • 2006
  • Single crystalline $CoFe_2O_4$ thin films on (100) MgO substrates were fabricated using a rf magnetron sputtering method. The deposited films were investigated for their crystallization by X-ray diffraction, Rutherford back-scattering spectroscopy and field emission scanning electron microscopy. When a cobalt ferrite film was deposited at the substrate temperature of $600^{\circ}C$, squared grains of about 200 nm were uniformly distributed in the film. However, the grains became irregular and their sizes also varied from 30 to 150 nm when the substrate temperature was $700^{\circ}C$. Hysteresis loops of a film deposited at $600^{\circ}C$ showed that the magnetically easy axis of the film was perpendicular to the substrate surface. Except for the squareness ratio, magnetic properties of the cobalt ferrite films grown by the present rf sputtering method were as good as those of the films prepared by a laser ablation method: The in-plane and perpendicular coercivities were 283 and 6800 Oe, respectively. As the thickness of the deposited film increased twice, the saturation magnetization became double but the coercivity remained unchanged. However, deposition of the Co ferrite films with a higher rf powder decreased the squareness ratio and the perpendicular coercivity of the films.

The Development of Fiber-Optic Hydrogen Gas Sensor for Non-Destructive Test Application (비파괴 검사 응용을 위한 광섬유 수소 가스 센서의 개발)

  • 윤의중;정명희
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.6
    • /
    • pp.380-387
    • /
    • 1998
  • In this paper, a sensor material with Fe/Zr multilayer thin film, in which the change in the magnetization and strain with hydrogenation is maximized, were developed. Compositionally modulated (CM) Fe/Zr multilayers with a $Fe_{80}Zr_{20}$ composition and modulation wavelengths ($\lambda$) $3~50{\AA}$ were deposited by sequentially sputtering (RF diode) elemental Fe and Zr targets. The films were electrolytically hydrogenated to select the optimum Fe/Zr multilayers that show the maximum increases in the magnetization and strain with hydrogenation. The changes in the magnetic properties of the thin films after hydrogenation, were measured using a hysteresis graph and a vibrating sample magnetometer (VSM), and the strains induced in the films by hydrogenation were also measured using a laser heterodyne interferometer (LHI). The optimum sensor material selected was incorporated in a fiber-optic hydrogen sensor (that can sense indirectly amount of hydrogen injected) by depositing it directly on the sensing arm of a single-mode fiber Michelson interferometer. The developed sensor holds significant promise for non-destructive test evaluation (NDE) applications because it is expected to be useful for detecting easily and accurately the subsurface corrosion in structural systems.

  • PDF

Characteristics of the Angular-dependent Exchange Coupling Bias in Multilayer [Pt/Co]N-IrMn with Toward-in Plane Applied Fields (박막수직방향에서 면방향으로 회전하는 인가자기장에 대한 다층박막 [Pt/Co]N-IrMn의 교환바이어스의 각도의존특성)

  • Kim, S.S.;Yim, H.I.;Rhee, J.R.;Lee, S.S.;Hwang, D.G.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.4
    • /
    • pp.142-146
    • /
    • 2008
  • The angular dependence of the exchange bias($H_{ex}$) and coercivity($H_c$) in multilayer $[Pt/Co]_N-IrMn$ with applied measuring field rotated toward in-plane at angle $\theta$ from perpendicular-to-plane, has been measured. Multilayer films consisting of $Si/SiO_2/Ta(50)/Pt(4)/[Pt(15)/Co(t_{Co})]_N/IrMn(50)/Ta(50)(in\;{\AA})$ were prepared by magnetron sputtering under typical base pressure below $2{\times}10^{-8}$ Torr at room temperature. Magnetization measurements were performed on a vibrating sample magnetometer and extraordinary Hall voltage measurement systems after cooling from 550 K under a field of 2 kOe applied along the perpendicular to film direction. The hysteresis loop shifts from the origin not only along the field axis but also along the magnetization axis. $H_{ex}$ and $H_c$ show a $1/cos{\theta}$ and $1/|cos{\theta}|$ dependence on the angle($\theta$) between the applied measuring field and the perpendicular-film direction, respectively. This $1/cos{\theta}$ dependence can be accounted for by considering the angular dependence of strong out-of-plane magnetic anisotropy introduced during the field cooling.