Browse > Article
http://dx.doi.org/10.4283/JKMS.2006.16.1.034

Structural and Magnetic Properties of Fe Doped CuO  

Park, Young-Ran (Department of Physics, Konkuk University)
Kim, Kwang-Joo (Department of Physics, Konkuk University)
Park, Jae-Yun (Department of Materials Science and Engineering, university of Incheon)
Ahn, Geun-Young (Department of Physics, Kookmin University)
Kim, Chul-Sung (Department of Physics, Kookmin University)
Abstract
Pure and Fe-doped CuO thin-film and powder samples were prepared using a sol-gel method. Undoped CuO films exhibited monoclinic structure and p-type electrical conductivity $(\~10^{-2}\;{\Omega^{-1}\;cm^{-1}$ due to copper deficiency. On the other hand, CuO: Fe films were found to be insulating and Li doping on the films led to a restoration of p-type conductivity and a ferromagnetic hysteresis behaviour at room temperature. The observed properties far the CuO : Fe, Li films can be explained in terms of hole creation by substitution of $Li^+$ for $Cu^{2+}$ sites and mediation of long-range interactions between $Fe^{3+}$ ions by the $Li^+$-induced defect states. CuO: Fe powders exhibited a ferromagnetism at room temperature with its strength being dependent on post-annealing temperature. Mossbauer measurements on the CuO: Fe films and powders revealed that the octahedral $Cu^{2+}$ sites are mostly substituted by $Fe^{3+}$ ions.
Keywords
CuO: Fe doping; ferromagnetism; Mossbauer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Marabell, G. B. Parravicini, and F. Salghetti-Drioli, Phys. Rev. B 55, 1433(1995)
2 D. A. Schwartz and D. R. Gamelin, Adv. Mater. 16, 2115 (2004)   DOI   ScienceOn
3 Z. Wang, J. Tang, L. D. Tung, W. Zhou, and L. Spinu, J. Appl. Phys. 93, 7870(2003)   DOI   ScienceOn
4 R. A. Borzi, S. J. Stewart, G. Punte, R. C. Mercader, G. A. Curatchet, R. D. Zysler, and M. Tovar, J. Appl. Phys. 87, 4870 (2000)   DOI   ScienceOn
5 P. Shah and A. Gupta, Phys. Rev. B 45, 483(1992)   DOI   ScienceOn
6 S. J. Stewart, G F. Goya, G. Punte, and R. C. Mercader, J. Phys. Chem. Solids 58, 73(1997)   DOI   ScienceOn
7 S. J. Stewart, R. A. Borzi, and R. C. Mercader, J. Magn. Magn. Mater. 192, 77(1999)   DOI   ScienceOn
8 G. F. Goya and H. R. Rechenberg, Nanostructured Materials 10, 1001(1998)   DOI   ScienceOn
9 S. J. Stewart, R. A. Borzi, G. Punte, and R. C. Mercader, Phys. Rev. B 57, 4983(1998)   DOI
10 D. Pajic, K. Zadro, R. E. Vanderberghe, and I. Nedkov, J. Magn. Magn. Mater. 281, 353(2004)   DOI   ScienceOn
11 B. X. Yang, J. H. Tranquada, and G. Shirane, Phys. Rev. B 38, 174(1988)   DOI   ScienceOn
12 M. T. S. Nair, L. Guerrero, O. L. Arenas, and P. K. Nair, Appl. Surf. Sci. 150, 143(1999)   DOI   ScienceOn
13 M. H. F. Sluiter, Y. Kawazoe, P. Sharma, A. Inoue, A. R. Raju, C. Rout, and U. V. Waghmare, Phys. Rev. Lett. 94, 187204 (2005)   DOI   ScienceOn
14 S. B. Ogale, P. G. Bilurker, and S. Joshi, Phys. Rev. B 50, 9743 (1994)   DOI   ScienceOn
15 S. G. Yang, T. Li, B. X. Gu, Y. W. Du, H. Y. Sung, S. T. Hung, C. Y. Wong, and A. B. Pakhomov, Appl. Phys. Lett. 83, 3746 (2003)   DOI   ScienceOn
16 K. Ueda, H. Tabata, and T. Kawai, Appl. Phys. Lett. 79, 988 (2001)   DOI   ScienceOn
17 J. H. Park, M. G. Kim, H. M. Jang, and S. Ryu, Appl. Phys. Lett. 84, 1338(2004)   DOI   ScienceOn