• Title/Summary/Keyword: magnetic field standard

Search Result 133, Processing Time 0.025 seconds

Magnetic Field Standards Using Magnetic Resonance

  • Park, Po Gyu;Kim, Wan-Seop;Joo, Sung Jung;Lee, Hyung Kew
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.1
    • /
    • pp.7-12
    • /
    • 2017
  • The nuclear magnetic resonance (NMR) and atomic magnetic resonance (AMR) plays a fundamental role in achieving a high accuracy of magnetic field measurements. Magnetic field unit (T) was realized based on the shielded proton gyromagnetic ratio (${\gamma}^{\prime}_P$), helium-4 gyromagnetic ratio (${\gamma}_{4He}$) and related techniques. The magnetic field standard system has been disseminated by the NMR magnetometer and electromagnet, a Helmholtz coil system, and AMR magnetometer in the nonmagnetic laboratory. A magnetic field standard below 1 mT has been developed by using Cs and Cs- $^4He$ AMR with automatic compensation of an external magnetic field noise. The standards serve for the calibration of magnetometers and support the test of sensors and materials in the range from $5{\mu}T$ to 2.0 T with (1 to 50) ${\mu}T/T$ uncertainty (k=2).

Construction of AC-DC Magnetic Field Standard Systems and Results of International Key Comparison (직류-교류 자기장 표준 시스템 제작 및 국제비교 결과)

  • Park, Po-Gyu;Kim, Young-Gyun
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.6
    • /
    • pp.201-206
    • /
    • 2004
  • The AC-DC magnetic field standard systems were constructed for the calibration of magnetometers for low magnetic field and the tests for low magnetic field characteristics of sensors and materials. In the range of 1 mT, the expanded uncertainty of dc is 8${\times}$10$\^$-6/, ac uncertainties are 0.16% in 0.1~1 kHz, 0.26% in 1~5 kHz, and 0.44% in 5~20 kHz. We have been participated in international key comparison(KC) to achieve the equality and the mutual agreement between standard institutes for the results of calibrations and tests. KRISS participating in ac-dc magnetic flux density of KC got equal level of uncertainty results compare with the advanced nations. It confirm that measurement ability of magnetic flux density is high level in the world.

A Study on the Magnetic Field Intensity and BER from Wayside Device to On-board Device about the Train Speed in ATP System (ATP 시스템에서 열차속도에 따른 지상자에서 차상자까지의 자계의 세기 및 비트오류율에 관한 연구)

  • Kim, Min-Seok;Lee, Sang-Hyeok;Lee, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1803-1808
    • /
    • 2010
  • Electric railway system consists of rolling stock, track, signal and catenary system. ATP system in railway signaling system is the important one grasping the position and velocity of a train. The wayside device of ATP system is installed between rails. Recently, the research about increasing train speed has been developed in total departments of the railroad systems. The study on the information transmission between on-board device and wayside device is required for increasing the train speed in the ATP system. When the train speed is increased as to same transmission distance, the problem on information transmission occurs because the transmission time is decreased. In case that the transmission distance is extended, the transmission time is decreased with respect to the train speed. Therefore, we have to define the standard magnetic field intensity as to the train speed in order to transmit correctly telegram. In this paper, the transmission distance for the telegram is suggested on the basis of the train speed. Also, the standard magnetic field intensity from the wayside device to on-board device is proposed by using transmission distance regarding the train speed in the ERTMS/ETCS system by using Matlab program. Also, BER according to the train speed is presented by calculating electric field intensity from the magnetic field intensity.

The Measurement of Electromagnetic Wave in Power Cable Tunnel of Underground Utility Tunnel (전력구 내 전자기파에 대한 작업 환경 측정)

  • Kang, Dae Kon;Park, Jai Hak
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Electromagnetic measurements of the power cable tunnel were conducted from August 10 to 20, 2018, in the ${\bigcirc}{\bigcirc}$ city underground utility tunnel. During this period, the average temperature was $31.89^{\circ}C$ and the humidity was 67.56% in power cable tunnel. As a result of the electromagnetic measurement, the highest electric field was 25.3 V/m and the magnetic flux density was $42.6{\mu}T$. The average electric field was 18.56 V/m and the magnetic flux density was $29.32{\mu}T$ in the power cable tunnel. As a result of comparison with the electric equipment technical standard, the electric field in the power cable tunnel was 0.5% of the electric equipment standard and 35.2% of the magnetic flux density. It's similar value that electric field is about robotic vacuum(15.53 V/m), and magnetic flux density is similar value about capsule- type coffee machine ($23.07{\mu}T$). The number of cable lines and the size of the electromagnetic waves were not proportional to each other through comparison of cable lines in the power cable tunnel. It was confirmed that 154 kV, rather than 22.9 kV, could have a greater influence on occupational.

Construction of a Low Magnetic Field Standard System Using a Precision Solenoid (정밀솔레노이드를 사용한 저자장 표준시스템 제작)

  • 박포규;손대락;우병칠;김창석
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.2
    • /
    • pp.150-155
    • /
    • 1992
  • The low magnetic field standard below 1 mT with resolution of 100 nT has been established for the calibration and testing of low field magnetometers. A precision single layered solenoid, which is made of quartz tube and bare copper wire, was constructed in order to generate a precise magnetic field. To improve the field homogeneity in the solenoid, three-current method was employed. The injected current and injection points on the solenoid were optimized by computer simulation. The magnetic field uncertainty in the solenoid was 0.1 % and 0.01 % in the range of ${\pm}5\;cm$ from the center for a single and three-current methods respectively. We also constructed a testing system for the dynamic properties of low field magnetometers.

  • PDF

Magnetic Field Strength Measurement using Circular Loop Antenna (환상 루-프 안테나를 이용한 자기장 세기의 측정)

  • 박병권;강찬구;김정환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.6
    • /
    • pp.566-573
    • /
    • 1991
  • For the evaluation of the magnetic field strengthmeasured by standard field method with that measured by standard antenna method. The compared results are in good agreement within the error limit. As the Result of this research, the calibration service for magnetic field strenth measurement can be provided whtin the uncertainty of about 1 dB in the frequency range of 10 kHz to 30MHz.

  • PDF

Magnetic $T_c$ Measurements of Composite Superconductors for a Standard Method (복합초전도체의 자기적 임계온도 측정의 표준화연구)

  • Lee K. W;Kim M. S;Kim D. H;Lee S. G
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.24-31
    • /
    • 2004
  • Magnetic $T_{c}$ of composite superconductors has been studied for providing a standard method. Various magnetization-temperature curves of NbTi, $Nb_3$Sn and Bi-2223 wires were measured using a SQUID magnetometer. Magnetization-temperature curve of zero-field-cooled procedure showed larger values than fie Id-cooled procedure. To obtain higher resolution near the onset temperature, we employed a two-field-direction method which measures a magnetization-temperature curve of a specimen first in positive and then negative fields. Analytical comparison of the magnetic $T_{c}$, with the resistive T$_{c}$ was accomplished for three specimens. The magnetic $T_{c}$/ mettled showed more detailed information on superconducting state of a specimen than the resistive$T_{c}$/ method. We have also studied the field dependence of the magnetic $T_{c}$ from 5 Oe to 120 Oe, however, no significant difference on field strength was found in our three specimensns

  • PDF

Calculation of Induced Current in the Human Body by Magnetic Field in the 100kHz~10MHz Resonant WPT Frequency Range and Analysis of EMF Guideline (공진형 무선전력전송 대역의 100kHz~10MHz 자기장에 의한 인체유도전류계산과 전자기장 인체보호기준 분석)

  • Shin, Hansu;Song, Hye-Jin;Byun, Jin-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.110-119
    • /
    • 2013
  • As the technologies such as middle-range resonant WPT (wireless power transfer) advance that utilizes medium and low-frequency magnetic field, the importance of safety of such magnetic field is growing. The research on the effect of electromagnetic field on the human body has been mainly done on the GHz range of mobile phones, or 50~60Hz range of electric power systems. However, there has been relatively few works on the 100kHz~10MHz range used in the resonant wireless power transfer. Since there is a difference in the limiting value of magnetic field between widely used ICNIRP EMF guideline and IEEE C95.1 standard, there can be possible confusion when establishing EMF (Electromagnetic Field) standard on the wireless power transfer device in the future. In this paper, the induced current in the human body, which is the basic restriction of the EMF guideline, is calculated using Quasi-static FDTD method when 3D high-resolution human model is exposed to the 100kHz~10MHz magnetic field. Using this result, the feasibility of the magnetic field reference level in the ICNIRP guideline is analyzed.

So, You Need Reliable Magnetic Measurements You Can Use With Confidence? How the Magnetic Measurement Capabilities at NPL Can Help

  • Hall, Michael;Harmon, Stuart;Thomas, Owen
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.339-341
    • /
    • 2013
  • The magnetic field standards, facilities and capabilities available at NPL for the calibration of magnetometers and gradiometers and the measurement of the magnetic properties of materials will be introduced. The details of the low magnetic field facility will be explained and the capabilities this facility enables for the characterisation and calibration of ultra-sensitive room temperature magnetic sensors will be presented. Building on core material capabilities that are compliant with the IEC 60404 series of written standards, the example of a standard permeameter that has been modified for the measurement of strips for real world conditions is discussed. This was incorporated into a stress machine to measure the DC properties of the soft magnetic materials used by the partners of a collaborative industry led R&D project at stress levels of up to 700 MPa. The results for three materials are presented and the changes in the properties with applied stress compared to establish which material exhibits favourable properties.

A Study on the Measurement System Design for Measuring Properties of AC Magnetic Field Sensor (교류 자기센서 특성 시험장치 설계에 관한 연구)

  • Chung, Hyun-Ju;Yang, Chang-Seob;Jung, Woo-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.244-252
    • /
    • 2015
  • This paper describes design and construction results of the measurement system developed on the purpose of measuring properties of AC magnetic field sensors used in the weapon system. The system for measuring the properties of AC magnetic field sensors consist of 3-axis helmholtz coil, signal generator, signal amplifier, sensor data acquisition unit and AC magnetic field sensor property measurement & analysis equipment including the operating software. By using this system, we can measure various properties of AC magnetic field sensor such as sensitivity, linearity and dynamic response in the frequency from 1 Hz to 10 kHz. Finally we also verified its performance by measuring the property of a MAG 639, standard magnetic field sensor of bartington instruments, with the developed measurement system.