• Title/Summary/Keyword: magnetic field effect

Search Result 1,133, Processing Time 0.027 seconds

Conceptual Design of the Filter using Electromagnet and Permanent Magnets for Removal of Radioactive Corrosion Products (방사성 부식생성물 제거를 위한 전자석 및 영구자석을 이용한 필터의 개념설계)

  • 송민철;공태영;이건재
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.38-42
    • /
    • 2003
  • In a pressurized water reactor, radioactive corrosion products (CRUD) in primary coolant system are one of the major sources for the occupational radiation exposure of the personnel in a nuclear power plant. Through the recent trend of long term fuel cycle in a nuclear power plant, radioactive corrosion products deposited in reactor core for a long time are also the cause of Axial Offset Anomaly (AOA) having an effect on reactor power by the hideout of boron. CRUD consist primarily of magnetite, nickel ferrite, cobalt ferrite, and so on. They have the characteristic of strong magnetism. Therefore it is peformed the conceptual design to develop the filter which removes the CRUD by magnetic field that is generated by an arrangement of permanent and electric magnets. Contrary to the conventional filter, the proposed filter does not interrupt the fluid flow, so there is little pressure drop and it can be used continuously. It is expected to be applied as one of the technologies for removal of the CRUD.

  • PDF

Dynamic Characteristics Analysis Considering the Effect of the Vortexes of Flux in a LIM for Railway Propulsion System (맴돌이 자속의 영향을 고려한 철도추진용 선형유도전동기의 동특성 연구)

  • Park, Chan-Bae;Lee, Byung-Song;Lee, Ju
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.3
    • /
    • pp.437-442
    • /
    • 2009
  • In the case of a Linear Induction Motor (LIM), numerical analysis method like Finite Element Method (FEM) has been mainly used to analyze the travelling magnetic field problem which includes the velocity-induced electromotive force. If the problem including the velocity-induced electromotive force is analyzed by FEM using the Galerkin method, the solution can be oscillated according to the Peclet Number, which is determined by conductivity, permeability, moving velocity and size of mesh. Consequently, the accuracy of the solution can be low and the vortexes of flux can be occurred at the secondary back-iron. These vortexes of the flux occurred at the secondary back-iron does not exist physically, but it can be occurred in the analysis. In this case, the vortexes of the flux can be generally removed by using Up-Wind method which is impossible to apply a conventional S/W tool (Maxwell 2D). Therefore, in this paper, authors examined the vortexes of the flux occurred at the secondary back-iron of the LIM according to variations of the Peclet Number, and analyzed whether these vortexes of the flux affect on the dynamic force characteristics of the LIM or not.

Development of Jelly-Type Simulating Polymer Based Human Tissue for Research on Hyperthermia by High Frequency Magnetic Field (고주파 자계 온열요법 연구를 위한 젤리형의 고분자계 모의인체)

  • Kim, Oh-Young;Choi, Chang-Young;Ma, Sung-Jae;Lim, Sang-Mung;Seo, Ki-Taek
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.572-575
    • /
    • 2006
  • In this work, a variety of polymer based jelly phantoms suitable for the hyperthermia operations to human organs was synthesized in order to confirm the possibility of auxiliary cancer therapy. Specifically, using an appropriate material composition including polyethylene, Jelly phantoms for brain was prepared and characterized their electrical properties suitable for the monitoring the effect of electromagnetic wave from code division multiple access (CDMA) and personal communication service (PCS) on the human body. In the future, after injection of ferromagnetic nanoparticle into the jelly phantoms, new approach to propose the cancer therapy can be anticipated by monitoring the degree of temperature rise in human body using the photograph of Infrared camera.

MHD WAVE ENERGY FLUXES GENERATED FROM CONVECTION ZONES OF LATE TYPE STARS

  • Moon, Yong-Jae;Yun, Hong-Sik
    • Journal of The Korean Astronomical Society
    • /
    • v.24 no.2
    • /
    • pp.129-149
    • /
    • 1991
  • An attempt has been made to examine the characteristics of acoustic and MHD waves generated in stellar convection zones($4000\;K\;{\leq}\;T_{eff}\;{\leq}\;7000\;K$, $3\;{\leq}\;\log\;g\;{\leq}\;4.5$). With the use of wave generation theories formulated for acoustic waves by Stein (1967), for MHD body waves by Musielak and Rosner (1987, 1988) and for MHD tube waves by Musielak et al.(l989a, 1989b), the energy fluxes are calculated and their dependence on effective temperature, surface gravity and megnetic field strength are analyzed by optimization techniques. In computing magneto-convection models, the effect of magnetic fields on the efficiency of convection has been taking into account by extrapolating it from Yun's sunspot models(1968; 1970). Our study shows that acoustic wave fluxes are dominant in F and G stars, while the MHD waves dominant in K and M stars, and that the MHD wave fluxes vary as $T_{eff}^4{\sim}T_{eff}^7$ in contrast to the acoustic fluxes, as $T_{eff}^{10}$. The gravity dependence, on the other hand, is found to be relatively weak; the acoustic wave fluxes ${\varpropto}\;g^{-0.5}$, the longitudinal tube wave fluxes ${\varpropto}\;g^{0.3}$ and the transverse tube wave fluxes ${\varpropto}\;g^{0.3}$. In the case of the MHD body waves their gravity dependence is found to be nearly negligible. Finally we assesed the computed energy fluxes by comparing them with the observed fluxes $F_{ob}$ of CIV(${\lambda}1549$) lines and soft X-rays for selected main sequence stars. When we scaled the corrected wave fluxes down to $F_{ob}$, it is found that these slopes are almost in line with each other.

  • PDF

Magnetisation Reversal Dynamics in Epitaxial Fe/GaAs(001) and Fe/InAs(001) Thin Films

  • Lee, W.Y;Shin, K.H;Kim, H.J;Bland, J.A.C.
    • Journal of Magnetics
    • /
    • v.6 no.2
    • /
    • pp.47-52
    • /
    • 2001
  • We present the magnetisation reversal dynamics of epitaxial Fe thin films grown on GaAs(001) and InAs(001) studied as a function of field sweep rate in the range 0.01-160 kOe/s using magneto-optic Kerr effect (MOKE). For 55 and 250 ${\AA}$ Fe/GaAs(001), we find that the hysteresis loop area A follows the scaling relation $A\propto H_{\alpha} \;with\; \alpha=0.03\sim0.05$ at low sweep rates and 0.33~0.40 at high sweep rates. For the 150${\AA}$ Fe/InAs(001) film, $\alpha$is found to be ~0.02 at low sweep rates and ~0.17 at high sweep rates. The differing values of $\alpha$ are attributed to a change of the magnetisation reversal process with increasing sweep rate. Domain wall motion dominates the magnetisation reversal at low sweep rates, but becomes less significant with increasing sweep rate. At high sweep rates, the variation of the dynamic coercivity $H_c{^*}$ is attributed to domain nucleation dominating the reversal process. The results of magnetic relaxation studies for easy-axis reversal are consistent with the sweeping of one or more walls through the entire probed region (~100$\mu m$). Domain images obtained by scanning Kerr microscopy during the easy cubic axis reversal process reveal large area domains separated by zigzag walls.

  • PDF

A Study on the Wear Behavior of Tetrahedral Amorphous Carbon Coatings Based on Bending Angles of the Filtered Cathodic Vacuum Arc with Different Arc Discharge Currents (자장여과아크소스의 자장필터 꺾임 각도와 아크방전전류에 따라 증착된 ta-C 코팅의 마모 거동 연구)

  • Kim, Won-Seok;Kim, Songkil;Jang, Young-Jun;Kim, Jongkuk
    • Tribology and Lubricants
    • /
    • v.38 no.3
    • /
    • pp.101-108
    • /
    • 2022
  • The structure and properties of tetrahedral amorphous carbon (ta-C) coatings depend on the main process parameters and bending angles of the magnetic field filter used in the filtered cathodic vacuum arc (FCVA). During the process, it is possible to effectively control the plasma flux of carbon ions incident on the substrate by controlling the arc discharge current, thereby influencing the mechanical properties of the coating film. Furthermore, we can control the size and amount of large particles mixed during carbon film formation while conforming with the bending angle of the mechanical filter mounted on the FCVA; therefore, it also influences the mechanical properties. In this study, we consider tribological characteristics for filtered bending angles of 45° and 90° as a function of arc discharge currents of 60 and 100 A, respectively. Experiment results indicate that the frictional behavior of the ta-C coating film is independent of the bending angle of the filter. However, its sliding wear behavior significantly changes according to the bending angle of the FCVA filter, unlike the effect of the discharge current. Further, upon changing the bending angle from 45° to 90°, abrasive wear gets accelerated, thereby changing the size and mixing amount of macro particles inside the coating film.

A STUDY ON THE IONOSPHERE AND THERMOSPHERE INTERACTION BASED ON NCAR-TIEGCM: DEPENDENCE OF THE INTERPLANETARY MAGNETIC FIELD (IMF) ON THE MOMENTUM FORCING IN THE HIGH-LATITUDE LOWER THERMOSPHERE (NCAR-TIEGCM을 이용한 이온권과 열권의 상호작용 연구: 행성간 자기장(IMF)에 따른 고위도 하부 열권의 운동량 강제에 대한 연구)

  • Kwak, Young-Sil;Richmond, Arthur D.;Ahn, Byung-Ho;Won, Young-In
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.2
    • /
    • pp.147-174
    • /
    • 2005
  • To understand the physical processes that control the high-latitude lower thermospheric dynamics, we quantify the forces that are mainly responsible for maintaining the high-latitude lower thermospheric wind system with the aid of the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM). Momentum forcing is statistically analyzed in magnetic coordinates, and its behavior with respect to the magnitude and orientation of the interplanetary magnetic field (IMF) is further examined. By subtracting the values with zero IMF from those with non-zero IMF, we obtained the difference winds and forces in the high-latitude 1ower thermosphere(<180 km). They show a simple structure over the polar cap and auroral regions for positive($B_y$ > 0.8|$\overline{B}_z$ |) or negative($B_y$ < -0.8|$\overline{B}_z$|) IMF-$\overline{B}_y$ conditions, with maximum values appearing around -80$^{\circ}$ magnetic latitude. Difference winds and difference forces for negative and positive $\overline{B}_y$ have an opposite sign and similar strength each other. For positive($B_z$ > 0.3125|$\overline{B}_y$|) or negative($B_z$ < -0.3125|$\overline{B}_y$|) IMF-$\overline{B}_z$ conditions the difference winds and difference forces are noted to subauroral latitudes. Difference winds and difference forces for negative $\overline{B}_z$ have an opposite sign to positive $\overline{B}_z$ condition. Those for negative $\overline{B}_z$ are stronger than those for positive indicating that negative $\overline{B}_z$ has a stronger effect on the winds and momentum forces than does positive $\overline{B}_z$ At higher altitudes(>125 km) the primary forces that determine the variations of tile neutral winds are the pressure gradient, Coriolis and rotational Pedersen ion drag forces; however, at various locations and times significant contributions can be made by the horizontal advection force. On the other hand, at lower altitudes(108-125 km) the pressure gradient, Coriolis and non-rotational Hall ion drag forces determine the variations of the neutral winds. At lower altitudes(<108 km) it tends to generate a geostrophic motion with the balance between the pressure gradient and Coriolis forces. The northward component of IMF By-dependent average momentum forces act more significantly on the neutral motion except for the ion drag. At lower altitudes(108-425 km) for negative IMF-$\overline{B}_y$ condition the ion drag force tends to generate a warm clockwise circulation with downward vertical motion associated with the adiabatic compress heating in the polar cap region. For positive IMF-$\overline{B}_y$ condition it tends to generate a cold anticlockwise circulation with upward vertical motion associated with the adiabatic expansion cooling in the polar cap region. For negative IMF-$\overline{B}_z$ the ion drag force tends to generate a cold anticlockwise circulation with upward vertical motion in the dawn sector. For positive IMF-$\overline{B}_z$ it tends to generate a warm clockwise circulation with downward vertical motion in the dawn sector.

Space Radiation Effect on Si Solar Cells (우주 방사능에 의한 실리콘 태양 전지의 특성 변화)

  • Lee, Jae-Jin;Kwak, Young-Sil;Hwang, Jung-A;Bong, Su-Chang;Cho, Kyung-Seok;Jeong, Seong-In;Kim, Kyung-Hee;Choi, Han-Woo;Han, Young-Hwan;Choi, Yong-Woon;Seong, Baek-Il
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.435-444
    • /
    • 2008
  • High energy charged particles are trapped by geomagnetic field in the region named Van Allen Belt. These particles can move to low altitude along magnetic field and threaten even low altitude spacecraft. Space Radiation can cause equipment failures and on occasions can even destroy operations of satellites in orbit. Sun sensors aboard Science and Technology Satellite (STSAT-l) was designed to detect sun light with silicon solar cells which performance was degraded during satellite operation. In this study, we try to identify which particle contribute to the solar cell degradation with ground based radiation facilities. We measured the short circuit current after bombarding electrons and protons on the solar cells same as STSAT-1 sun sensors. Also we estimated particle flux on the STSAT-l orbit with analyzing NOAA POES particle data. Our result clearly shows STSAT-l solar cell degradation was caused by energetic protons which energy is about 700keV to 1.5MeV. Our result can be applied to estimate solar cell conditions of other satellites.

A Study on the Feasibility of Geomagnetic Declination Investigation at Unified Control Points in South Korea (국내 통합기준점에서 지자기 편각 조사의 타당성 연구)

  • Lee, Yong Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.3
    • /
    • pp.29-38
    • /
    • 2016
  • As publicizing of electromagnetic devices such as smart_phone and drone etc. which are relate with geomagnetic direction, and recognition about the importance to space weather effect and their hazards rises up recently, it is required heavily that the study on the effective measurement of geomagnetic declination and geomagnetic field effects of space weather. The purpose of this study is that the investigation of the feasibility of the absolute geomagnetic measurement in a place, where man-made geomagnetic contamination is low or negligible, with replacing the azimuth marks used for the absolute geomagnetic declination measurement with unified control points(UCP) which established at suburb. Further to this, have first derived the correlation of daily variations and disturbance level between the published indices($K_P$ and $K_K$) and geomagnetic element calculated from geomagnetic data of Cheongyang observatory located at the middle stage in Korea and is a member of INTERMAGNET. In addition, have carried out that the absolute measurement for the geomagnetic declination at three places near unified control point and one place with wide open field in Korea. The world magnetic models(WMMs) are selected as the criteria for comparison on the feasibility of geomagnetic declination investigation near unified control points. We compared deviations of declination from absolute measurement with that obtained from WMMs, also those from WMMs inter-comparison. The result through examination and analysis show that the feasibility of the absolute geomagnetic declination measurement with replacing the azimuth marks with UCP which established at suburb is possible.

Effect of sputtering conditions on the exchange bias and giant magnetoresistance in Si/Ta/NiFe/CoFe/Cu/CoFe/FeMn/Ta spin valves (스파터링 조건이 FeMn계 top 스핀 밸브의 exchange bias 및 자기적 특성에 미치는 영향)

  • Kim, K.Y.;Shin, K.S.;Han, S.H.;Lim, S.H.;Kim, H.J.;Jang, S.H.;Kang, T.
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.2
    • /
    • pp.67-73
    • /
    • 2000
  • Top spin valve samples with a structure Ta/NiFe/CoFe/Cu/CoFe/FeMn/Ta were deposited on a Si(100) substrate by changing d.c. magnetron sputtering conditions and the exchange-bias and magnetic properties of samples were investigated. The Exchange field, H$\_$ex/ increased with increase of sputtering power of FeMn from 30 to 150 W and CoFe from 30 to 100 W deposited on the Cu, the increase of H$\_$ex/ was found due to the improvement of preferred orientation of (111) FeMn phase from XRD results. In the case of Cu, H$\_$ex/ decreased with the increase of sputtering pressure ranging from 1 to 5 mTorr. The relationship between exchange field and resistance was investigated, spin valve samples with a large exchange field showed the lower resistance, which was strongly dependent on the good crystallinity and grain size increase as well as lower scattering effects. The Cu thickness was changed from 22 to 38 $\AA$ for Si/Ta/NiFe/CoFe/Cu(t), 30 W/CoFe, 100 W/FeMn, 100 W/Ta spin valve structures, MR ratio of 6.5 % and exchange field of about 190 Oe were obtained for the sample with Cu of 22 $\AA$ thickness. The increase of exchange field with decrease of Cu thickness was explained by FM/AFM spin-spin interaction.

  • PDF