• 제목/요약/키워드: magnetic circuit

검색결과 1,209건 처리시간 0.026초

등가자기회로법을 이용한 동기형 릴럭턴스 전동기의 스큐해석 (Skew Analysis of Synchronous Reluctance Motor Using Equivalent Magnetic Circuit Method)

  • 안준선;임승빈;김솔;임성엽;권삼영;이주
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권3호
    • /
    • pp.123-130
    • /
    • 2006
  • This paper presents characteristics analysis of skewed Synchronous Reluctance Motor using equivalent magnetic circuit and compares with the result of Finite Element Method. Torque ripple must be reduced, because it is producing noise and vibration. There is many kinds of method to reduce torque ripple, but generally we apply skewing stator or rotor. The 2D Finite Element Method(FEM) or 3D FEM is used to analyze the motor, since skew influence the average torque in the motor. However, the FEM takes much time in spite of the advanced computer and numerical technique. This paper will analyze characteristics of skewed synchronous reluctance motor using equivalent magnetic circuit.

Stator Shape Optimization for Electrical Motor Torque Density Improvement

  • Kim, Hae-Joong;Kim, Youn Hwan;Moon, Jae-Won
    • Journal of Magnetics
    • /
    • 제21권4호
    • /
    • pp.570-576
    • /
    • 2016
  • The shape optimization of the stator and the rotor is important for electrical motor design. Among many motor design parameters, the stator tooth and yoke width are a few of the determinants of noload back-EMF and load torque. In this study, we proposed an equivalent magnetic circuit of motor stator for efficient stator tooth and yoke width shape optimization. Using the proposed equivalent magnetic circuit, we found the optimal tooth and yoke width for minimal magnetic resistance. To verify if load torque is truly maximized for the optimal tooth and yoke width indicated by the proposed method, we performed finite element analysis (FEA) to calculate load torque for different tooth and yoke widths. From the study, we confirmed reliability and usability of the proposed equivalent magnetic circuit.

유도전동기의 자기등가회로 해석을 위한 시스템 매트릭스 구성 (Formation of System Matrix for analyzing Magnetic Equivalent Circuit of Induction Motor)

  • 최재영;이은웅;정종호;김성종;우성봉
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.330-332
    • /
    • 2000
  • To analyze the transient state of an induction motor, there have been studies for using the magnetic equivalent circuit method(MECD) instead of the time differential finite-element method. MECD which analyzes magnetic equivalent circuits after converting each part of an electric machine into the magnetic circuit elements, has the merits of short calculation-time and comparatively accurate results. To analyze an electric machine with MECM, we have to replace stator and rotor with the magnetic elements and express the air gap, where electromechanical energy conversion takes place, with the permeance. So in this study, to analyze an Induction Motor with HECM, we express the magnetic equivalent circuit as algebraic equations and then as the matrix for solving easily them. In particular, all relations are formed with matrixes to solve Mathematically them in the programming process later. As a result, this theory will be the basis on the static and dynamic analysis of an Induction Motor.

  • PDF

비접촉식 정밀 변위 측정용 자기센서 모델링 (Modeling of a Non-contact Type Precision Magnetic Displacement Sensor)

  • 신우철;홍준희;이기석
    • 한국정밀공학회지
    • /
    • 제22권8호
    • /
    • pp.42-49
    • /
    • 2005
  • Our purpose is to develop a precision magnetic displacement sensor that has sub-micron resolution and small size probe. To achieve this, we first have tried to establish mathematical models of a magnetic sensor in this paper. The inductance model that presents basic measuring principle of a magnetic sensor is based on equivalent magnetic circuit method. Especially we have concentrated on modeling of magnetic flux leakage and magnetic flux fringing. The induced model is verified by experimental results. The model, including the magnetic flux leakage and flux fringing effects, is in good agreement with the experimental data. Subsequently, based on the augmented model, we will design magnetic sensor probe in order to obtain high performances and to scale down the probe.

Electromotive Force Characteristics of Current Transformer According to the Magnetic Properties of Ferromagnetic Core

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권1호
    • /
    • pp.37-41
    • /
    • 2015
  • The most common structure of the current transformer (CT) consists of a length of wire wrapped many times around a silicon steel ring passed over the circuit being measured. Therefore, the primary circuit of CT consists of a single turn of the conductor, with a secondary circuit of many tens or hundreds of turns. The primary winding may be a permanent part of the current transformer, with a heavy copper bar to carry the current through the magnetic core. However, when the large current flows into a wire, it is difficult to measure its magnitude of current because the core is saturated and the core shows magnetic nonlinear characteristics. Therefore, we proposed a newly designed CT which has an air gap in the core to decrease the generated magnetic flux. Adding the air gap in the magnetic path increases the total magnetic reluctance against the same magnetic motive force (MMF). Using a ferrite core instead of steel also causes the generation of low magnetic flux. These features can protect the magnetic saturation of the CT core compared with the steel core. This technique can help the design of the CT to obtain a special shape and size.

A Type of Subsection Model for a Permanent Magnet Bar and its Leakage Permeance Calculation Method in an Open Magnetic Circuit

  • Liang, Huimin;You, Jiaxin;Yang, Wenying;Zhai, Guofu
    • Journal of Magnetics
    • /
    • 제19권1호
    • /
    • pp.37-42
    • /
    • 2014
  • The equivalent model of a permanent magnet (PM) plays an important role in electromagnetic system calculation. A type of subsection model for a PM bar is established, to improve the accuracy of the traditional equivalent circuit method. The mathematical expression, and its end verification condition, are presented. Based on the analytical method and finite element method, the leakage permeance calculation of a PM bar in an open magnetic circuit is investigated. As an example, for a given certain type of PM bar, the magnetic flux of each section is validated by experiment, and by simulation. This model offers a foundation for building a high accuracy equivalent magnetic PM model in an electromagnetic system.

자기저항기법에 의한 평면형 비례전자석의 전자기 해석 (Electromagnetic Analysis of a Flat-Type Proportional Solenoid by the Reluctance Method)

  • 홍예선;권용철
    • 한국정밀공학회지
    • /
    • 제22권4호
    • /
    • pp.99-106
    • /
    • 2005
  • In this study, the electromagnetic characteristics of a flat-type two-dimensional proportional solenoid were analyzed by the magnetic reluctance method. The equivalent magnetic circuit equation for the solenoid was derived by modeling the reluctance of air gaps and magnetic structural components such as pole core, armature and yoke. It was solved iteratively because of the nonlinear magnetization properties of the iron parts. The solutions showed good agreement with experimental data. Based on the equivalent magnetic circuit equation, the influence of design parameters on the force-to-armature displacement curves was mathematically derived and experimentally verified. In this way, dominant design parameters could be analytically determined.

Design and Analysis of Interior Permanent Magnet Synchronous Motor Considering Saturated Rotor Bridge using Equivalent Magnetic Circuit

  • Shin, Kyung-Hun;Yu, Ju-Seong;Choi, Jang-Young;Cho, Han-Wook
    • Journal of Magnetics
    • /
    • 제19권4호
    • /
    • pp.404-410
    • /
    • 2014
  • This paper considers the design and performance evaluation of interior permanent magnet synchronous motors (IPMSMs). The initial design such as the sizing and shape design of the stator and rotor is performed for a given load condition. In particular, the equivalent magnetic circuit (EMC) is employed both to design the mechanical parameters of the rotor while considering nonlinear magnetic saturation effect and to analyze the magnetic characteristics of the air-gap of the motor. The designed motor is manufactured and tested to confirm the validity of the design processes and simulated results.

LC공진 회로와 PPF제어기를 이용한 자체 측정식 자기 서스펜션 시스템 (Self-Sensing Magnetic Suspension System using an LC Resonant Circuit with a Positive Position Feedback Controller)

  • 최창환;박기환
    • 제어로봇시스템학회논문지
    • /
    • 제5권7호
    • /
    • pp.787-793
    • /
    • 1999
  • A self-sensing magnetic suspension system utilizing a LC resonant circuit is proposed by using the characteristic that the inductance of the magnetic system is varied with respect to the air gap displacement. An external capacitor is added into the electric system to make the levitation system be statically stable system, which much relieves the control effort required to stabilize the magnetic suspension system of haying an intrinsic unstable nature. For the realization of the self- sensing magnetically levitated system, an amplitude modulation / demodulation method is used with a positive position feedback controller Experimental results are presented to validate the proposed method.

  • PDF

배선용 차단기의 소호실 설계를 위한 Arc의 자기구동력의 3차원 해석 (3-D Finite Element Analysis of Magnetic Force on the Arc for Design of Arc Chamber or Molded Case Circuit Breaker)

  • 송희찬;손종만;강성화;임기조
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1536-1540
    • /
    • 1996
  • The Design of are quenching parts of molded case circuit breakers depends on the utilization of strength and distribution of the magnetic field by which the arc is forced. The magnetic field causes the are to move into a set of V-slotted iron grids, where the are is extinguished rapidly. This paper present the effective method 10 design V-slotted iron plates of the are breaking chamber of molded case circuit breakers. This magnetic force was calculated by using the flux densities in the arc which are obtained by three dimensional finite element method, as a result of that this paper verified by testing that a grid model which has biggest magnetic force is excellent in the are quenching ability.

  • PDF