• 제목/요약/키워드: magnetic bearing control

검색결과 215건 처리시간 0.024초

공기포일 및 자기 하이브리드 베어링으로 지지되는 연성축의 휨 모드 진동 제어 (Bending Mode Vibration Control of a Flexible Shaft Supported by a Hybrid Air-foil Magnetic Bearing)

  • 정세나;안형준;김승종
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.791-791
    • /
    • 2009
  • Hybrid air-foil magnetic bearing combines two oil free bearing technologies to take advantage of the strengths of each bearing with minimizing each other weaknesses. This paper presents bending mode vibration control of a flexible shaft supported by the hybrid air-foil magnetic bearing. An experiment set-up of a flexible shaft supported by the hybrid air-foil magnetic bearing is built. In order to verify the effectiveness of the hybrid bearing, unbalance responses of the flexible shaft supported by three different bearings: air-foil, magnetic and hybrid bearings are compared. Effect of load sharing between air-foil and magnetic bearings are investigated through changing control gain and offset displacements of magnetic bearing.

  • PDF

Fault Tolerant Homopolar Magnetic Bearings with Flux Invariant Control

  • Na Uhn-Joo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권5호
    • /
    • pp.643-651
    • /
    • 2006
  • The theory for a novel fault-tolerant 4-active-pole homopolar magnetic bearing is developed. If any one coil of the four coils in the bearing actuator fail, the remaining three coil currents change via an optimal distribution matrix such that the same opposing pole, C-core type, control fluxes as those of the un-failed bearing are produced. The hompolar magnetic bearing thus provides unaltered magnetic forces without any loss of the bearing load capacity even if any one coil suddenly fails. Numerical examples are provided to illustrate the novel fault-tolerant, 4-active pole homopolar magnetic bearings.

공기포일 자기 하이브리드 베어링으로 지지되는 연성 축의 휨 모드 진동 제어 (Bending Mode Vibration Control of a Flexible Shaft Supported by a Hybrid Air-foil Magnetic Bearing)

  • 정세나;안형준;김승종;이용복
    • Tribology and Lubricants
    • /
    • 제27권2호
    • /
    • pp.57-64
    • /
    • 2011
  • Hybrid air-foil magnetic bearing integrates two oil free bearing technologies synergetically to adopt the strengths of two bearings with minimizing their weaknesses. This paper presents bending mode vibration control of a flexible shaft supported by the hybrid air-foil magnetic bearing. An experiment set-up of a flexible shaft supported by the hybrid air-foil magnetic bearing is built. In order to verify the effectiveness of the hybrid bearing, unbalance responses of the flexible shaft supported by three different bearings: air-foil, magnetic and hybrid bearings are compared. Effect of load sharing between air-foil and magnetic bearings are investigated through changing the control gain and the rotor center position of magnetic bearing. The experimental results shows that the hybrid bearing can control the bending mode vibration of the flexible shaft effectively and an optimal performance can be achieved with an appropriate load sharing between the air-foil and the magnetic bearings.

A Four Pole, Double Plane, Permanent Magnet Biased Homopolar Magnetic Bearing with Fault-Tolerant Capability

  • Na, Uhn-Joo
    • 한국산업융합학회 논문집
    • /
    • 제24권6_1호
    • /
    • pp.659-667
    • /
    • 2021
  • This paper develops the theory for a novel fault-tolerant, permanent magnet biased, 4-active-pole, double plane, homopolar magnetic bearing. The Lagrange Multiplier optimization with equality constraints is utilized to calculate the optimal distribution matrices for the failed bearing. If any of the 4 coils fail, the remaining three coil currents change via a novel distribution matrix such that the same opposing pole, C-core type, control fluxes as those of the un-failed bearing are produced. Magnetic flux coupling in the magnetic bearing core and the optimal current distribution helps to produce the same c-core fluxes as those of unfailed bearing even if one coil suddenly fails. Thus the magnetic forces and the load capacity of the bearing remain invariant throughout the failure event. It is shown that the control fluxes to each active pole planes are successfully isolated. A numerical example is provided to illustrate the new theory.

선형행렬부등식 기법을 이용한 횡축형 자기 베어링 시스템의 로버스트 제어 (A Robust Control of Horizontal-Shaft Magnetic Bearing System Using Linear Matrix Inequality Technique)

  • 김창화;정병건;양주호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권2호
    • /
    • pp.321-330
    • /
    • 2001
  • Magnetic bearing system is frequently used for high-speed rotating machines because of its frictionless property. But the magnetic bearing system needs feedback controller for stabilization. This paper presents a robust controller design by using linear matrix inequality for magnetic bearing system which shows the control performance and robust stability under the physical parameter perturbations. To the end, the validity of the designed controller is investigated through computer simulation.

  • PDF

외란을 받는 자기베어링 주축계의 강건제어 (Robust Control of Disturbed Magnetic Bearing Rotor Systems)

  • 강호식;송오섭
    • 한국공작기계학회논문집
    • /
    • 제13권2호
    • /
    • pp.40-46
    • /
    • 2004
  • Magnetic bearing has been adopted to support a rotor by electromagnetic force without mechanical contact and lubrication process. The recent growth of magnetic bearing applications in many industrial fields requires more accurate design of bearing-rotor system. Due to external forces and uncertainties of magnetic bearing system the actual performance and stability my be worse than it is designed. This paper describes the governing equations of rotor magnetic bearing systems and/or the designing of robust controller via standard $H_{\infty}$ control problem. The system stability and response characteristics are studied by simulations and verified with experimental results.

자기베어링으로 지지되는 연성축계의 식별 및 강인 제어에 관한 연구 (A Study on the Identification and Robust Control of Flexible Rotor Supported by Magnetic Bearing)

  • 안형준;전수;한동철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.3-6
    • /
    • 2000
  • The magnetic bearing system are intrinsically unstable, and need the feedback control of electromagnetic forces with measured displacements. So the controller design plays an important role in constructing high performance magnetic bearing system. In case of magnetic bearing system, the order of identified model is high because of unknown dynamics included in closed loop systems - such as sensor dynamics, actuator dynamics - and non-linearity of magnetic bearings itself. In this paper the identification and robust control of flexible rotor supported by magnetic bearing are discussed. We measure and identify overall system that contains not only flexible rotor model but also magnetic bearing and time delay. The structured and unstructured uncertainties are modeled that cover variations of natural frequencies, uncertainties in sensor and actuator gains and unmodeled dynamics. And desired performances are specified with several weighting function. Using augmented system that includes identified model, uncertainties, and weighting functions, μ-synthesis is applied to flexible rotor supported with magnetic bearing. The flexible rotor was spin up over the first flexible critical speed.

  • PDF

External Magnetic Field of Journal Bearing with Twined Solenoid

  • Zhang, Yanjuan;Wang, Jianmei;Li, Decai
    • Journal of Magnetics
    • /
    • 제22권2호
    • /
    • pp.291-298
    • /
    • 2017
  • In this paper, the distribution of internal magnetic induction intensity of oil-film bearing twined solenoids was proposed. The magnetic field was generated by solenoids and magnetized bearing. The magnetized bearing was simplified as solenoid model. The mathematical model of magnetic induction intensity at any point of finite solenoid was deduced. Through experiment method, the distribution of the internal magnetic induction intensity of oil-film bearing and the magnetizing current formula of bearing was obtained. Further, the magnetic induction intensity distribution of magnetization bearing was solved successfully. The results showed that the magnetic induction was a second-degree parabola with open upwards along the axial plane and the distribution of magnetic induction intensity was opposite to the rule of magnetic induction intensity generated by solenoids. In addition, the magnetic flux density increased linearly with the increase of current.

베이스 운동을 받는 다자유도 능동자기베어링계에서 외란 관측기 기반 슬라이딩모드 제어 (Disturbance Observer Based Sliding Mode Control for Multi-DOF Active Magnetic Bearing System Subject to Base Motion)

  • 강민식
    • 한국소음진동공학회논문집
    • /
    • 제14권11호
    • /
    • pp.1182-1194
    • /
    • 2004
  • This paper addresses the application of an active magnetic bearing (AMB) system to levitate the elevation axis of an electro-optical sight mounted on a moving vehicle. In this type of system, it is desirable to retain the elevation axis in an air-gap between magnetic bearing stators while the vehicle is moving. To eliminate disturbance responses, a disturbance observer based sliding mode control is developed. This control can decouple disturbance observation dynamics from sliding mode dynamics and preserves the robustness of the sliding control. The sliding surfaces are designed in the consideration of scattering of received image. The proposed control is applied to a 2-DOF active magnetic bearing system subject to base motion. Along with experimental results, the feasibility of the proposed technique is illustrated.

반복적 설계 방식을 사용한 다중입출력 자기베어링 시스템의 식별 및 제어기 성능 향상 (Iterative Control-Relevant Identification and Controller Enhancement of MIMO Magnetic Bearing Rigid Rotor)

  • 한동철;이상욱;안형준;이상호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.493-498
    • /
    • 2000
  • The magnetic bearing systems are intrinsically unstable, and need the feedback control of electromagnetic forces with measured displacements. So the controller design plays an important role in constructing high performance magnetic bearing system. In case of magnetic bearing systems, the order of identified model is high because of unknown dynamics included in closed loop systems - such as sensor dynamics, actuator dynamics-and non-linearity of magnetic bearings itself. "Identification for control" - joint optimization of system identification and controller design- is proposed to get the limited-order model which is suited for the design of high-performance controller. We applied the joint identification/controller design scheme to MIMO rigid rotor system supported by magnetic bearings. Firs, we designed controller of a nonlinear simulation model of MIMO magnetic bearing system with this scheme and proved its feasibility. Then, we performed experiments on MIMO rigid rotor system supported by magnetic bearings, and the performance of closed-loop system is improved gradually during the iteration.

  • PDF