• Title/Summary/Keyword: magnesium-based composite

Search Result 20, Processing Time 0.023 seconds

Corrosion Monitoring of PEO-Pretreated Magnesium Alloys

  • Gnedenkov, A.S.;Sinebryukhov, S.L.;Mashtalyar, D.V.;Gnedenkov, S.V.;Sergienko, V.I.
    • Corrosion Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.151-159
    • /
    • 2017
  • The MA8 alloy (formula Mg-Mn-Се) has been shown to have greater corrosion stability than the VMD10 magnesium alloy (formula Mg-Zn-Zr-Y) in chloride-containing solutions by Scanning Vibrating Electrode Technique (SVET) and by optical microscopy, gravimetry, and volumetry. It has been established that the crucial factor for the corrosion activity of these samples is the occurrence of microgalvanic coupling at the sample surface. The peculiarities of the kinetics and mechanism of the corrosion in the local heterogeneous regions of the magnesium alloy surface were investigated by localized electrochemical techniques. The stages of the corrosion process in artificial defects in the coating obtained by plasma electrolytic oxidation (PEO) at the surface of the MA8 magnesium alloy were also studied. The analysis of the experimental data enabled us to determine that the corrosion process in the defect zone develops predominantly at the magnesium/coating interface. Based on the measurements of the corrosion rate of the samples with PEO and composite polymer-containing coatings, the best anticorrosion properties were displayed by the composite polymer-containing coatings.

Evaluation of Physical, Mechanical Properties and Pollutant Emissions of Wood-Magnesium Laminated Board (WML Board) for Interior Finishing Materials

  • PARK, Hee-Jun;JO, Seok-Un
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.86-94
    • /
    • 2020
  • This study serves as basic research for the development of a new wood-based building finishing material that improved the weakness of inorganic materials such as gypsum board and magnesium board widely used as interior finishing materials and brought out the strength of the wood. The results of evaluating the physical and mechanical properties and the environmental effect related to hazardous substance discharge having manufactured a wood-magnesium laminated composite are as follows. The thermal conductivity and thermal resistance of WML board was improved by about 28~109 percent over magnesium board due to the low thermal conductivity of wood. The adhesive strength of WML board showed a similar result to that of plywood as it exceeds 0.7N/㎟, the adhesive standard of wood veneer which is presented by KS F 3101. Bending strength and screw holding strength were more improved by manufacturing WML board than magnesium board. The WML board manufactured in this study satisfied the criteria for emissions of hazardous substances prescribed in the Indoor Air Quality Control Act, and confirmed the possibility of development as a new wood-based composite material that can replace existing inorganic materials.

Fatigue Crack Growth Behavior of a Magnesium-Based Composite (마그네슘 금속복합재의 피로균열거동해석)

  • Kim, Doo Hwan;Park, Yong Gul;Kim, Sung Hoon;Han, Suk Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.515-521
    • /
    • 1997
  • The effects of heat treatment and fiber orientation on tensile strength and fatigue behavior were studied in a continuously reinforced. magnesium-based composite Following an earlier TEM investigation, specimens were thermally aged to modified the interfacial zone between the alumina fibers and the magnesium alloy matrix. From the tensile experimental results, the ultimate tensile strength of the aged specimens were lower than that of the as-fabricated due to weak fiber-matrix interfacial strength with chemical reaction during the thermal processing. The fatigue crack growth experiments were conducted with specimens having the fiber orientation normal to the crack growth direction (longitudinal) and also specimens with the fibers oriented parallel to the crack growth direction(transverse). A comparison of the fatigue crack growth behavior indicates that aged longitudinal specimens are more resistant to fatigue crack growth the as-fabricated longitudinal specimens. Conversely, as-fabricated transverse specimens are more resistant to fatigue crack growth than aged transverse specimens.

  • PDF

Thermal Conductivity and Mechanical Properties of Magnesium Oxide Reinforced Polyamide-66 Composites

  • Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.50 no.3
    • /
    • pp.205-209
    • /
    • 2015
  • Magnesium oxide (MgO) reinforced polyamide-66 (PA66) composites were prepared through melt-compounding method in order to determine the possibility of using MgO particle as conductive filler in the polymer-based composite. The effects of MgO filler content on the thermal conductivity and mechanical properties for the PA66/MgO composites were investigated. The results showed that the addition of MgO filler to the PA66 matrix led to a large increase in thermal conductivity of the PA66/MgO composites. Tensile strengths of the PA66/MgO composites were slightly decreased as MgO filler loading increased. However, flexural strength and flexural modulus were improved with increasing filler loading. Notched Izod impact strengths were dramatically lowered by the addition of MgO filler.

A Synthesis of Mullite-Cordierite Composite Powders by Solution-Polymerization Route Based on Polyvinyl Alcohol (PVA를 이용한 Solution-Polymerization 합성법에 의한 Mullite-Cordierite 복합분말의 합성)

  • Lee, Yong-Seok;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.663-669
    • /
    • 2004
  • Mullite and cordierite, which were stable oxides having excellent thermal and chemical characteristics, were widely used as an engineering and electronic materials. However, thermal shock resistance of the mullite was detriorated, and strength of the cordierite was also reduced at high temperatures. The mullite-cordierite composite powders were synthesized for solving these problems in this study. The mullite-cordierite composite powders were manufactured by the solution-polymerization method using mixtures of fused silica, aluminium nitrate, magnesium nitrate, and PVA. Crystallinity, phase formation, density, and surface area of the synthesis powders were characteristics. Fine mullite-cordlerite composite powders were successfully synthesized at 1300$^{\circ}C$ and their surface areas were about 20㎡/g after planetary milling for 1h. With increasing the milling time, surface area increased to 23 ㎡/g for 4h ana 24㎡/g for 8h.

Optimizing the Friction Stir Spot Welding Parameters to Attain Maximum Strength in Al/Mg Dissimilar Joints

  • Sundaram, Manickam;Visvalingam, Balasubramanian
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.23-30
    • /
    • 2016
  • This paper discusses the optimization of friction stir spot welding (FSSW) process parameters for joining Aluminum alloy (AA6061-T6) with Magnesium alloy (AZ31B) sheets. Prior to optimization an empirical relationship was developed to predict the Tensile Shear Fracture Load (TSFL) incorporating the four most important FSSW parameters, i.e., tool rotational speed, plunge rate, dwell time and tool diameter ratio, using response surface methodology (RSM). The experiments were conducted based on four factor, five levels central composite rotatable design (CCD) matrix. The maximum TSFL obtained was 3.61kN, with the tool rotation of 1000 rpm, plunge rate of 16 mm/min, dwell time of 5 sec and tool diameter ratio of 2.5.

Characterization of TiC/Mg Composites Fabricated by in-situ Self-propagating High-temperature Synthesis followed by Stir Casting Process (자전연소합성법 및 교반주조 공정으로 제조된 TiC/Mg 금속복합재료의 특성연구)

  • Lee, Eunkyung;Jo, Ilguk
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.256-261
    • /
    • 2020
  • In this study, the ignition temperature of the Al-Ti-C reaction system, the microstructure and the mechanical properties of the TiC/Mg composite which produced by the self-propagating high-temperature synthesis (SHS) followed by stir casting process were investigated. Mg based composite with uniformly dispersed 0, 10, 20, and 30 vol.% TiC were fabricated, and higher volume fraction of TiC reinforced composite showed superior compressive strength and wear resistance as compared with Mg matrix. It is attributed to the less contamination, defects, impurities in TiC/Mg composite by the in-situ SHS yield effective load transfer from the matrix to the reinforcement.

Fabrication of AZ31/CNT Surface Composite by Friction Stir Processing (마찰교반공정에 의한 AZ31/CNT 표면 복합재료 제조)

  • Kim, Jae-Yeon;Lee, Seung-Mi;Hwang, Jung-Woo;Byeon, Jai-Won
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.6
    • /
    • pp.315-321
    • /
    • 2015
  • Friction stir processing (FSP) was applied to fabricate AZ31/CNT (Carbon Nano Tube) surface composite for improvement of surface hardness of AZ31 Mg-based alloy. The effects of traverse speed of rotating tool and volume fraction of CNT (i.e., groove depth of 3 mm and 4 mm) on the soundness and hardness of the composite layer were investigated. Multi-walled CNTs were fully filled in a machined groove and stirring tool was rotated at the speed of 1400 rpm. Only under the tool traverse speed of 25 mm/min for the specimen with a groove depth of 3 mm, surface composite layer with no defect was successfully produced. Increased hardness of about 35% was observed in the composite layer.

High Flame Retardancy and High-strength of Polymer Composites with Synergistically Reinforced MOSw and EG

  • Kim, Chowon;Lee, Jinwoo;Yoon, Hyejeong;Suhr, Jonghwan
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.359-364
    • /
    • 2022
  • Polymers are inherently vulnerable to flame, which limits their application to various high-tech industries. In addition, environmental regulations restrict the use of halogen-based flame retardants which has best flame-retardant effect. There are inorganic flame retardants and phosphorous flame retardants as representative non-halogen-based flame retardants. However, high content of flame retardants is required to impart high flame retardancy of the polymers, and this leads to a decrease in mechanical properties. In this research, a new approach for inorganic flame retardant-based polymer composites with high mechanical properties and flame retardancy was suggested. Inorganic flame retardants called as magnesium oxysulfate whisker (MOSw) were used in this research. MOSw can extinguish fire by releasing water and non-combustible gases when exposed to flame. In addition, they have reinforcing effect when added into the polymer with its high aspect ratio. Expandable graphite (EG) was used as a flame-retardant supplement by helping to form a more dense char layer. Through this research, it is expected that it can be applied to various industries requiring flame retardancy such as automobile, and architecture by replacing halogen-based flame polymer composites.

A Study on the Mechanical, Thermal, Morphological, and Water Absorption Properties of Wood Plastic Composites (WPCs) Filled with Talc and Environmentally-Friendly Flame Retardants (친환경 난연제와 탈크를 첨가한 목재·플라스틱 복합재의 기계적, 열적, 형태학적 및 수분흡수 특성에 관한 연구)

  • Lee, Danbee;Kim, Birm-June
    • Journal of the Korea Furniture Society
    • /
    • v.27 no.2
    • /
    • pp.137-144
    • /
    • 2016
  • Wood plastic composite (WPC) is a green composite made of wood flour and thermoplastics to provide better performance by removing the defects of both wood and plastics. However, relatively low thermal stability and poor fire resistance of wood and plastics included in WPC have been still issues in using WPC as a building material for interior applications. This study investigated the effect of environmentally-friendly flame retardants (EFFRs) on the mechanical, thermal, morphological, and water absorption properties of wood flour (WF)/talc/polypropylene (PP) composites in comparison with neat PP. The whole EFFRs-filled WF/talc/PP composites showed higher values in flexural strength, flexural modulus, and impact strength compared to neat PP. In thermal properties, aluminum hydroxide (AH)-filled composite showed a $36^{\circ}C$ reduction in maximum thermal decomposition temperature ($T_{max}$) compared to neat PP, but magnesium hydroxide (MH) played an important role in improving thermal stability of filled composite by showing the highest $T_{max}$. From this research, it can be said that MH has potentials in reinforcing PP-based WPCs with improvement of thermal stability.