• Title/Summary/Keyword: magnesium sulfate

Search Result 227, Processing Time 0.033 seconds

Decrease of Metagonimus yokogawai Endemicity along the Tamjin River Basin

  • Lee, Jin-Ju;Kim, Hyo-Jin;Kim, Min-Jae;Lee, Jo-Woon-Yi;Jung, Bong-Kwang;Lee, Ji-Youn;Shin, Eun-Hee;Kim, Jae-Lip;Chai, Jong-Yil
    • Parasites, Hosts and Diseases
    • /
    • v.46 no.4
    • /
    • pp.289-291
    • /
    • 2008
  • The Tamjin River which flows from Jangheung-gun via Gangjin-gun to the South Sea was reported to be a highly endemic area of Metagonimus yokogawai infection in 1977 and 1985. However, there were no recent studies demonstrating how much change occurred in the endemicity, in terms of prevalence and worm burden, of metagonimiasis in this river basin. Thus, a small-scale epidemiological survey was carried out on some residents along the Tamjin River basin in order to determine the current status of M. yokogawai infection. A total of 48 fecal samples were collected and examined by the Kato-Katz thick smear and formalin-ether sedimentation techniques. The egg positive rate of all helminths was 50.0%, and that of M. yokogawai was 37.5%, followed by C. sinensis 22.9% and G. seoi 4.2%. To obtain the adult flukes of M. yokogawai, 6 egg positive cases were treated with praziquantel 10 mg/kg in a single dose and purged with magnesium sulfate. A total of 5,225 adult flukes (average 871 specimens per person) of M. yokogawai were collected from their diarrheic stools. Compared with the data reported in 1977 and 1985, the individual worm burdens appeared to have decreased remarkably, although the prevalence did not decrease at all. It is suggested that the endemicity of M. yokogawai infection along the Tamjin River has been reduced. To confirm this suggestion, the status of infection in snail and fish intermediate hosts should be investigated.

The Study on the Ion Water Characteristics of Raw Water in the Domestic Natural Mineral Water (국내 유통 중인 먹는샘물 원수의 이온류 수질 특성에 관한 연구)

  • Lee, Leenae;Ahn, Kyunghee;Min, Byungdae;Yang, Mihee;Choi, Incheol;Chung, Hyenmi;Park, Juhyun
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.5
    • /
    • pp.442-449
    • /
    • 2016
  • The goal of this study is to provide basic data to establish a foundation for the provision of safe drinkable water. The raw water of natural mineral water was analyzed to determine the quantities of anions (F-, Cl-, NO3-N-, and SO42- ) and cations (Ca2+, K+, Mg2+, and Na+) during the former and latter half of 2016. Analysis of the current quality of the raw water of natural mineral water among domestic manufacturers showed average anions contents of 0.46mg/L of fluorine, 8mg/L of chlorine ion, 1.5mg/L of nitrate nitrogen, and 12mg/L of sulfate ion. While the fluorine content was greater than the water quality criterion of 2.0mg/L at four points, the fluorine level was overall stable. The average cations contents included 21.3mg/L of calcium, 1.0mg/L of potassium, 3.4mg/L of magnesium, and 9.6mg/L of sodium. The chemical characteristics were compared among the major ions, and the results are presented in a piper diagram. The content ratio of cations was in the order of Ca2+> Na+>Mg2+>K+, whereas that of anions was in the order of SO42->Cl->NO3-N->F-. While the cations were slightly scattered, the anions were generally concentrated except for at a few points. The Ca-Na-HCO3 type was dominant overall in water sources from diorite, gneiss, and granite, while the Na-Mg-Ca-HCO3-Cl type was dominant in basalt sources. Mineral water manufacturers source their water under various conditions, including in-hole casing, excavation depth, and contact state of bedrock; even within the same rocky area, some differences in the water quality type can occur. When the depth of the water source was taken into account, the mean anions contents of F-, Cl-, NO3-N-, and SO42- were similar, with no significant differences according to depth. Of the cations, K+ and Na+ showed no significant differences across all the tubular wells, whereas Ca2+ and Mg2+ decreased in content with depth.

A Study on the Ingredients in the Sap of Acer mono MAX. and Betula costata T. in Mt. Jiri Area -On the Components of Mineral and Sugar- (지리산지역 고로쇠나무 및 거제수(거자수) 나무의 수액성분에 관하여 -Mineral과 Sugar성분에 관하여-)

  • 서화중;김충모;정두례
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.5
    • /
    • pp.479-482
    • /
    • 1991
  • The medical use of Acer mono MAX. and Betula costata T. sap has had the long history in Korea. So the mineral and sugar contents of these sap gathered in Mt. Jiri area at spring were analyzed to investigate the scientific base of folk remedies by using ion liquid chromatography and high performance liquid chromatography. The values of chlorine and sulfate in Acer mono MAX. were 11.5 mg/l and 176.7 mg/l, and in Betula costata T. 26.5 mg/l and 162.4 mg/l, respectively. The values of potassium, sodium, calcium and magnesium in Acer mono MAX. were 67.9 mg/l, 5.6 mg/l, 73.8 mg/l and 4.5 mg/l, and in Betula costata T. were 152.1 mg/l, 9.7 mg/l, 39.2 mg/l and 5.7 mg/l, respectively. The values of copper, zinc and manganese in Acer mono MAX. were 0.057 mg/l, 0.483 mg/l and 5.071 mg/l, and copper, zinc, mangances and iron in Betula costata T. were 0.038 mg/l, 1.584 mg/l, 4.354 mg/l and 2.511 mg/l, respectively. The values of sucrose in Acer mono MAX. were 27.29 mg/l, glucose and fructose in Betula costata T. were 0.97 g/l and 3.05 g/l, respectively.

  • PDF

Development of Analytical methods for Chinomethionat in Livestock Products (축산물 중 살균제 Chinomethionat의 개별 잔류분석법 확립)

  • Yang, Seung-Hyun;Kim, Jeong-Han;Choi, Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.2
    • /
    • pp.134-141
    • /
    • 2021
  • BACKGROUND: The analytical method was established for determination of fungicide chinomethionat in several animal commodities using gas chromatography (GC) coupled with electron capture detector (ECD). METHODS AND RESULTS: In order to verify the applicability, the method was optimized for determining chinomethonat in various livestock products including beef, pork, chicken, milk and egg. Chinomethionat residual was extracted using acetone/dichloromethane(9/1, v/v) with magnesium sulfate and sodium chloride (salting outassociated liquid-liquid extraction). The extract was diluted by direct partitioning into dichloromethane to remove polar co-extractives in the aqueous phase. The extract was finally purified with optimized silica gel 10 g. CONCLUSION: The method limit of quantitation (MLOQ) was 0.02 mg/kg, which was in accordance with the maximum residue level (MRL) of chinomathionate as 0.05 mg/kg in livestock product. Recovery tests were carried out at two levels of concentration (MLOQ, 10 MLOQ) and resulted in good recoveries (84.8~103.0%). Reproducibilities were obtained (Coefficient of variation <5.2%), and the linearity of calibration curves were reasonable (r2>0.995) in the range of 0.01-0.2 ㎍/mL. This established analytical method was fully validated and could be useful for quantification of chinomathionat in animal commodities as official analytical method.

Development of a novel combination tablet containing silodosin and solifenacin succinate for the treatment of urination disorder (배뇨 장애 치료를 위한 실로도신과 솔리페나신 숙신산염 함유한 새로운 복합 정제 개발)

  • Choi, Hyung-Joo;Lee, Jeong-Gyun;Kim, Kyeong Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.323-332
    • /
    • 2021
  • This study was undertaken to develop a new combination tablet containing silodosin and solifenacin succinate for treating urination disorders, for which a simultaneous analytical method of silodosin and solifenacin succinate was established. The aqueous solubility of silodosin and solifenacin succinate was determined to be higher than 1 mg/ml in various buffers, and dissolution of the silodosin and solifenacin succinate commercial products was accomplished within 30 minutes. The drug-excipients compatibility test was subsequently evaluated using differential scanning calorimetry. Excipients without compatibility were selected, and various combination formulations were prepared applying the wet granulation method. Of these, the formulation comprising silodosin, solifenacin succinate, lactose hydrate, MCC PH101, sodium lauryl sulfate (SLS), Povidone K30, crospovidone and magnesium stearate, having a weight ratio of 8/10/56/112/2/6/6/2, respectively, showed equivalence comparative to the dissolution achieved with the commercial products of silodosin (Thrupas tab) and solifenacin succinate (Vesicare tab). Thus, we propose that compared to the currently available commercial products, this novel combination tablet containing silodosin and solifenacin succinate is an effective alternative for the treatment of urination disorders.

Stabilization Mechanisms of Powdered and Bead Type Stabilizer Made of Mg-Fe Layered Double Hydroxide (LDH) for the Arsenic Contaminated Soil (Mg-Fe 이중층수산화물로 제조한 분말상과 입상 안정화제의 비소 오염토양 안정화 기작)

  • Kim, Seonhee;Kim, Kyeongtae;Oh, Yuna;Han, Yikyeong;Lee, Minhee
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.4
    • /
    • pp.49-62
    • /
    • 2022
  • The magnesium and iron-based layered double hydroxide (Mg-Fe LDH) was synthesized by the co-precipitation process and the bead type LDH (BLDH, 5~6 mm in diameter) was manufactured by using the Mg-Fe LDH and the starch as a binder. To evaluate the feasibility of the BLDH as the As stabilizer in the soil, various experiments were performed and the As stabilization efficiency of the BLDH was compared to that of powdered type LDH (PLDH, <149 ㎛ in diameter). For the As sorption batch experiment, the As sorption efficiency of both of the PLDH and the BLDH showed higher than 99%. For the stabilization experiment with soil, the As extraction reducing efficiency of the PLDH was higher than 87%, and for the BLDH, it was higher than 80%, suggesting that the BLDH has similar the feasibility of As stabilization for the contaminated soil, compared to the PLDH. From the continuous column experiments, when more than 7% BLDH was added into the soil, the As stabilization efficiency of the column maintained at over 91% for 7 pore volume flushing (simulating about 21 months of rainfall) and slowly decreased down to 64% after that time (to 36 months) under the non-equilibrium conditions. Results suggested that more than 7% of BLDH added in As-contaminated soil could be enough to stabilize As in soil for a long time. The main As fixation mechanisms on the LDH were also identified through the X-ray fluorescence (XRF), the X-ray diffraction (XRD), and the Fourier transform infrared (FT-IR) analyses. Results showed that the LDH has enough of an external surface adsorption capacity and an anion exchange capability at the interlayer spaces. Results of SEM/EDS and BET analyses also supported that the Mg-Fe LDH used in this study has sufficient porous structures and outer surfaces to fix the As. The reduction of carbonate (CO32-) and sulfate (SO42-) anions in the LDH after the reaction between As and the LDH was observed through the FT-IR, the XRF, and the XRD analyses, suggesting that the exchange of some of these anions with the arsenate (H2AsO4- or HAsO42-) occurs at the LDH interlayers during the stabilization process in soil.

Column Comparison for the Separation of Ferimzone Z and E Stereoisomers and Development of Trace Residue Analysis Method in Brown Rice Using HPLC-MS/MS (컬럼 비교를 통한 Ferimzone Z 및 E 입체 이성질체의 물질 분리 및 HPLC-MS/MS를 활용한 현미 중 미량잔류분석법 개발)

  • Mun-Ju Jeong;So-Hee Kim;Hye-Ran Eun;Ye-Jin Lee;Su-Min Kim;Jae-Woon Baek;Yoon-Hee Lee;Yongho Shin
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.3
    • /
    • pp.203-210
    • /
    • 2023
  • Ferimzone Z is a fungicide for effectively controlling rice blast. Under light irradiation conditions, it undergoes a rapid conversion to its E-stereoisomer. Given the importance of isomers in risk assessments of residues in crops, an analytical method was developed for individual isomer quantification. A comparative analysis performed using two columns in HPLC-MS/MS demonstrated that the isomers were successfully separated using the Cadenza column. For the brown rice sample preparation, 5 g of the homogenized sample was saturated with 7 mL of water. The sample was then extracted with a 10 mL mixed solvent of acetonitrile and ethyl acetate (1:1, v/v) that contained 0.1% formic acid, and it was subsequently partitioned with magnesium sulfate and sodium chloride. The upper layer was purified using dSPE containing C18 and PSA sorbents. The established method was subjected to method validation, and it showed recovery rates of 90.6-98.8% (RSD ≤ 3.9%) at concentrations of 0.01, 0.1, 2 mg/kg, with a soft matrix effect (%ME) ranging from -3.1% to +6.5%. This method can be employed in monitoring studies of brown rice to determine the conversion ratio from the Z isomers to the E isomers.

Study Analysis of Isocycloseram and Its Metabolites in Agricultural Food Commodities

  • Ji Young Kim;Hyochin Kim;Su Jung Lee;Suji Lim;Gui Hyun Jang;Guiim Moon;Jung Mi Lee
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.71-81
    • /
    • 2023
  • An accurate and easy-to-use analytical method for determining isocycloseram and its metabolites (SYN549431 and SYN548569) residue is necessary in various food matrixes. Additionally, this method should satisfy domestic and international guidelines (Ministry of Food and Drug Safety and Codex Alimentarius Commission CAC/GL 40). Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) was used to determine the isocycloseram and its metabolites residue in foods. To determine the residue and its metabolites, a sample was extracted with 20 mL of 0.1% formic acid in acetonitrile, 4 g magnesium sulfate anhydrous and 1 g sodium chloride and centrifuged (4,700 G, 10 min, 4℃). To remove the interferences and moisture, d-SPE cartridge was performed before LC-MS/MS analysis with C18 column. To verify the method, a total of five agricultural commodities (hulled rice, potato, soybean, mandarin, and red pepper) were used as a representative group. The matrix-matched calibration curves were confirmed with coefficients of determination (R2) ≥ 0.99 at a calibration range of 0.001-0.05 mg/kg. The limits of detection and quantification were 0.003 and 0.01 mg/kg, respectively. Mean average recoveries were 71.5-109.8% and precision was less than 10% for all five samples. In addition, inter-laboratory validation testing revealed that average recovery was 75.4-107.0% and the coefficient of variation (CV) was below 19.4%. The method is suitable for MFDS, CODEX, and EU guideline for residue analysis. Thus, this method can be useful for determining the residue in various food matrixes in routine analysis.

Development of the Simultaneous Analysis of 36 Sulfonylurea Herbicide Residues in Agricultural Products Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 제초제 Sulfonylurea계 36종 동시 시험법 개발)

  • Su Jung Lee;Jung Mi Lee;Gui Hyun Jang;Hyun-Kyung Kim;Ji Young Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.2
    • /
    • pp.139-151
    • /
    • 2023
  • Sulfonylurea herbicides are widely used in agriculture because they have a long residual period and high selectivity. An analytical method was developed using QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) technique for simultaneous determination of sulfonylurea herbicide residues in agricultural products by liquid chromatography tandem mass spectrometry and for establishment MRL (Maximum Residue Limit) of those herbicides in Korea. Extraction was performed using acetonitrile containing 0.1% formic acid with MgSO4 (anhydrous magnesium sulfate) and NaCl (sodium chloride) and the extract was cleaned up using MgSO4 and C18 (octadecyl). The matrix-matched calibration curves were composed of 7 concentration levels from 0.001 to 0.25 mg/kg and their coefficients of determination (R2) exceeded 0.99. The recoveries of three spiking levels (LOQ, 10LOQ, 50LOQ, n=5) were in the range of 71.7-114.9% with relative standard deviations of less than 20.0% for all the five agriculture products. All validation values met criteria of the European Union SANTE/11312/2021 guidelines and Food and Drug Safety Evaluation guidelines. Therefore, the proposed analytical method was accurate, effective, and sensitive for sulfonylurea herbicide residues determination in agricultural commodities.

Discrimination of the drinking water taste by potentiometric electronic tongue and multivariate analysis (전자혀 및 다변량 분석법을 활용한 먹는물의 구별 방법)

  • Eunju Kim;Tae-Mun Hwang;Jae-Wuk Koo;Jaeyong Song;Hongkyeong Park;Sookhyun Nam
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.425-435
    • /
    • 2023
  • Organoleptic parameters such as color, odor, and flavor influence consumer perception of drinking water quality. This study aims to evaluate the taste of the selected bottled and tap water samples using an electronic tongue (E-tongue) instead of a sensory test. Bottled and tap water's mineral components are related to the overall preference for water taste. Contrary to the sensory test, the potentiometric E-tongue method presented in this study distinguishes taste by measuring the mineral components in water, and the data obtained can be statistically analyzed. Eleven bottled water products from various brands and one tap water from I city in Korea were evaluated. The E-tongue data were statistically analyzed using multivariate statistical tools such as hierarchical clustering analysis (HCA), principal component analysis (PCA), and partial least squares discriminant analysis (PLS-DA). The results show that the E-tongue method can clearly distinguish taste discrimination in drinking water differing in water quality based on the ion-related water quality parameters. The water quality parameters that affect taste discrimination were found to be total dissolved solids (TDS), sodium (Na+), calcium (Ca2+), magnesium (Mg2+), sulfate (SO42-), chloride (Cl-), potassium (K+) and pH. The distance calculation of HCA was used to quantify the differences between 12 different types of drinking water. The proposed E-tongue method is a practical tool to quantitatively evaluate the differences between samples in water quality items related to the ionic components. It can be helpful in quality control of drinking water.