• Title/Summary/Keyword: maglev train

Search Result 135, Processing Time 0.023 seconds

Dynamic Interaction Evaluation of Maglev Vehicle and the Segmented Switching System (자기부상열차 차량과 분기기 동적상호작용 시험 평가)

  • Lee, Jong-Min;Han, Jong-Boo;Kim, Sung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.576-582
    • /
    • 2017
  • The switching system in a maglev train is an indispensable element for distributing train routes, and it should be designed to ensure safe operation. Unlike conventional wheels on rails, the switching track in EMS-type maglev is supported by a group of 3 to 4 steel girders. When the vehicle changes its route, the segmented track allows the girders to change from a straight position to a curved one with a small radius of curvature. Hence, the structural characteristics of the segmented switching system may affect the levitation stability of the maglev vehicle. This study experimentally evaluates the dynamic interaction between maglev vehicles and a segmented switching system. The results may be helpful for improving the switching system. The measured levitation and lateral air gaps were evaluated at a vehicle speed of 25 km/h, and the ride quality of the Maglev vehicle was determined to be "comfortable" according to the UIC 513 standard.

Speed Detection of MAGLEV (자기부상열차의 속도검출)

  • Park, S.H.;Ham, S.Y.;Park, J.S.;Yoon, Y.W.;Ahn, S.K.;Park, C.I.;Kim, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.431-433
    • /
    • 1996
  • In MAGLEV system, the train detection can be achieved by using cross inductive radio lines and antennas, because it is impossible to obtain the short circuit between rail and iron-wheel. In this paper, the experimental results of speed profile which is held on MAGLEV at KIMM are presented. We could obtain the successful experimental results for the speed pulses by the inductive radio lines.

  • PDF

Bi-directional information transmission in MAGLEV (자기부상열차에서의 양방향 정보전송)

  • Ahn, Sang-Kwon;Park, Jeong-Soo;Chang, Dae-Sik;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.434-436
    • /
    • 1996
  • This paper deals with the signal communication system for MAGLEV which is indispensible to train control with safety and high speed operation. Therefore it is necessary for signal system to ensure high speed transmission. massive transmission, low error rate, and reliability of information. And the ensured information should be transmitted between ground and on-board for safety and high speed operation. For these reasons, we have considered the guaranteed reliability by applying FSK method and HDLC protocol. Because HDLC has the advantages of high efficiency, high reliability, low bit rate, and bit transparency. HDLC is the appropriate method for data transmission in MAGLEV.

  • PDF

The Development of Third-Rail System Applied to Turn-out Section for Urban Maglev (도시형 자기부상열차 분기기 구간의 제3궤조 전차선 시스템 개발)

  • Min, Byong-Chan;Heo, Young-Tae;Hong, Du-Young;Lee, Won-Joo;Jo, Su-Yeon;Jeong, Nam-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3046-3051
    • /
    • 2011
  • The third-rail system is an important device supplying power directly to the Maglev train through physical contact with the collecting shoe. It is directly related to safety and reliability for the running of Maglev. However, most the third-rail system used in Korea depend on foreign product or technologies, Korea Urban Maglev in the development of appropriate power feeding is urgent. In particular, the turnout section is the weakness point in the system because bending force by turnout section movement and fatigue caused by repetitive motion as well as the expansion by temperature, the forces by Maglev collecting shoe is added th the third-rail. Therefore, this paper proposes the third-rail system appropriate for Korean Urban Maglev of turnout section. To verify the structural stability of POSCO ICT third-rail system, the finite element analysis and physical testing was performed. The third-rail is fixed on each side of the turn-out section steel structure by epoxy insulation supporter and the integral behaviors are occurred. Therefore, the maximum horizontal displacements of each support are investigated and then, it is applied to finite element model of the third-rail to investigate the moments and stress. Also, the bending test about one million times and Expansion Joint for the third-rail was performed. The third-rail system safety and reliability was identified by test line on Korea Institute of Machinery & Materials in Deajeon for under the actual usage environment such as the Maglev and turn-out operation.

  • PDF

Multiple damage detection of maglev rail joints using time-frequency spectrogram and convolutional neural network

  • Wang, Su-Mei;Jiang, Gao-Feng;Ni, Yi-Qing;Lu, Yang;Lin, Guo-Bin;Pan, Hong-Liang;Xu, Jun-Qi;Hao, Shuo
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.625-640
    • /
    • 2022
  • Maglev rail joints are vital components serving as connections between the adjacent F-type rail sections in maglev guideway. Damage to maglev rail joints such as bolt looseness may result in rough suspension gap fluctuation, failure of suspension control, and even sudden clash between the electromagnets and F-type rail. The condition monitoring of maglev rail joints is therefore highly desirable to maintain safe operation of maglev. In this connection, an online damage detection approach based on three-dimensional (3D) convolutional neural network (CNN) and time-frequency characterization is developed for simultaneous detection of multiple damage of maglev rail joints in this paper. The training and testing data used for condition evaluation of maglev rail joints consist of two months of acceleration recordings, which were acquired in-situ from different rail joints by an integrated online monitoring system during a maglev train running on a test line. Short-time Fourier transform (STFT) method is applied to transform the raw monitoring data into time-frequency spectrograms (TFS). Three CNN architectures, i.e., small-sized CNN (S-CNN), middle-sized CNN (M-CNN), and large-sized CNN (L-CNN), are configured for trial calculation and the M-CNN model with excellent prediction accuracy and high computational efficiency is finally optioned for multiple damage detection of maglev rail joints. Results show that the rail joints in three different conditions (bolt-looseness-caused rail step, misalignment-caused lateral dislocation, and normal condition) are successfully identified by the proposed approach, even when using data collected from rail joints from which no data were used in the CNN training. The capability of the proposed method is further examined by using the data collected after the loosed bolts have been replaced. In addition, by comparison with the results of CNN using frequency spectrum and traditional neural network using TFS, the proposed TFS-CNN framework is proven more accurate and robust for multiple damage detection of maglev rail joints.

Analysis of the Magnetic Effect on the Tube Infrastructure for a Super Speed Tube Train

  • Lee, Hyung-Woo;Cho, Su-Yeon;Cho, Woo-Yeon;Lee, Ju;Kwon, Hyeok-Bin
    • International Journal of Railway
    • /
    • v.2 no.4
    • /
    • pp.170-174
    • /
    • 2009
  • Super speed tube train is introduced to increase the speed of ground transportation. The super speed tube train levitates magnetically and runs in a partial vacuum tube, which can reduce the air resistance significantly. However, the strong magnetic force enough to propel the massive train can affect to the tube infrastructure. In this paper, authors have analyzed the leakage flux patterns and induced eddy current on the tube by using 3-dimensional Finite Element Method. These effects are investigated, especially by varying the materials and diameters of the tube. From the simulation results, the aluminum tube with the diameter of 3[m] is needed to be concerned because the induced eddy current produces joule heat, raises the inside temperature of the tube, and might be able to lead to electro-chemical corrosion on the tube, consequently reduce the durability.

  • PDF

Dynamic Interaction Analysis of Train and Bridge According to Modeling Methods of Maglev Trains (자기부상열차의 모델링방법에 따른 열차-교량의 동적상호작용 해석)

  • Jung, Myung-Rag;Min, Dong-Ju;Lee, Jun-Seok;Kwon, Soon-Duck;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.167-175
    • /
    • 2011
  • The purpose of this study is to examine the impact that change in speed and modeling methods has on maglevs' runnability. The study constructed equations of motion on 4-DOF, 6DOF, and 10-DOF vehicles respectively and carried out numerical analysis, applying 4th Runge Kutta method, in order to run six different model maglev as changing the vehicles speed on the same bridge that had 2000 to 1 deflection. The analysis revealed that maglev's runnability improved as speed was lower and the specific model had higher number of bogey and EMS.

Modeling and Validation of 3DOF Dynamics of Maglev Vehicle Considering Guideway (궤도 선형을 고려한 자기부상 열차의 3자유도 동역학 모델 수립 및 검증)

  • Park, Hyeon-cheol;Noh, Myounggyu;Kang, Heung-Sik;Han, Hyung-Suk;Kim, Chang-Hyun;Park, Young-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.1
    • /
    • pp.41-46
    • /
    • 2017
  • Magnetically levitated (Maglev) vehicles maintain a constant air gap between guideway and car bogie, and thereby achieves non-contact riding. Since the straightness and the flatness of the guideway directly affect the stability of levitation as well as the ride comfort, it is necessary to monitor the status of the guideway and to alert the train operators to any abnormal conditions. In order to develop a signal processing algorithm that extracts guideway irregularities from sensor data, virtual testing using a simulation model would be convenient for analyzing the exact effects of any input as long as the model describes the actual system accurately. Simulation model can also be used as an estimation model. In this paper, we develop a state-space dynamic model of a maglev vehicle system, running on the guideway that contains jumps. This model contains not only the dynamics of the vehicle, but also the descriptions of the power amplifier, the anti-aliasing filter and the sampling delay. A test rig is built for the validation of the model. The test rig consists of a small-scale maglev vehicle, tracks with artificial jumps, and various sensors measuring displacements, accelerations, and coil currents. The experimental data matches well with those from the simulation model, indicating the validity of the model.

Applicability Evaluation of Precast Deck to the Maglev Guideway System : Static Performance Test (프리캐스트 바닥판의 자기부상열차 가이드웨이 시스템 적용성 평가 : 정적 성능 실험)

  • Jin, Byeong-Moo;Kim, In-Gyu;Kim, Young-Jin;Lee, Yun-Seok;Ma, Hyang-Wook;Oh, Hyun-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.985-988
    • /
    • 2008
  • Maglev is a system that a train runs levitated above a rail. Therefore it is very important to maintain a constant levitation gap for achieving serviceability and ride comfort. This study is a cooperation research subject of the 3-1 subject, performance improvement of maglev track structures, of the Center for Urban Maglev Program in Korea, started in 2006. The aim of this study is development of rapid constructions of bridge superstructure for maglev. At present, precast deck is widely used because of its superiority to cast-in-place concrete on quality and the term of works. The research group suggested basic systems of maglev guideway with PSC-U type and trapezoidal open steel box type girder, and precast deck, cooperating with Korea Railroad Research Institute, the managing institute of the 3-1 subject. In this study, full-scale structure was fabricated for structural safety evaluation of precast decks and rail, and a static performance test of those structures was performed.

  • PDF

Applicability Evaluation of Precast Deck to the Maglev Guideway System : Mock-Up Construction Test (프리캐스트 바닥판의 자기부상열차 가이드웨이 시스템 적용성 평가 : 모의 시공 실험)

  • Jin, Byeong-Moo;Kim, In-Gyu;Kim, Young-Jin;Oh, Hyung-Chul;Ma, Hyang-Wook;Lee, Yung-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.57-60
    • /
    • 2008
  • Maglev is a system that a train runs levitated above a rail. Therefore it is very important to maintain a constant levitation gap for achieving serviceability and ride comfort. This study is a cooperation research subject of the 3-1 subject, performance improvement of maglev track structures, of the Center for Urban Maglev Program in Korea, started in 2006. The aim of this study is development of rapid constructions of bridge superstructure for maglev. At present, precast deck is widely used because of its superiority to cast-in-place concrete on quality and the term of works. The research group suggested basic systems of maglev guideway with PSC-U type and trapezoidal open steel box type girder, and precast deck, cooperating with Korea Railroad Research Institute, the managing institute of the 3-1 subject. In this study, a mock-up consisted of girders, decks and rail was fabricated and test was performed for constructability, serviceability and maintenance evaluation of PSC U-type girder, precast deck, and new guide rail system.

  • PDF