• 제목/요약/키워드: machined surface

검색결과 737건 처리시간 0.025초

Microgrooves on titanium surface affect peri-implant cell adhesion and soft tissue sealing; an in vitro and in vivo study

  • Lee, Hyo-Jung;Lee, Jaden;Lee, Jung-Tae;Hong, Ji-Soo;Lim, Bum-Soon;Park, Hee-Jung;Kim, Young-Kwang;Kim, Tae-Il
    • Journal of Periodontal and Implant Science
    • /
    • 제45권3호
    • /
    • pp.120-126
    • /
    • 2015
  • Purpose: With the significance of stable adhesion of alveolar bone and peri-implant soft tissue on the surface of titanium for successful dental implantation procedure, the purpose of this study was to apply microgrooves on the titanium surface and investigate their effects on peri-implant cells and tissues. Methods: Three types of commercially pure titanium discs were prepared; machined-surface discs (A), sandblasted, large-grit, acid-etched (SLA)-treated discs (B), SLA and microgroove-formed discs (C). After surface topography of the discs was examined by confocal laser scanning electron microscopy, water contact angle and surface energy were measured. Human gingival fibroblasts (hGFs) and murine osteoblastic cells (MC3T3-E1) were seeded onto the titanium discs for immunofluorescence assay of adhesion proteins. Commercially pure titanium implants with microgrooves on the coronal microthreads design were inserted into the edentulous mandible of beagle dogs. After 2 weeks and 6 weeks of implant insertion, the animal subjects were euthanized to confirm peri-implant tissue healing pattern in histologic specimens. Results: Group C presented the lowest water contact angle ($62.89{\pm}5.66{\theta}$), highest surface energy ($45{\pm}1.2mN/m$), and highest surface roughness ($Ra=22.351{\pm}2.766{\mu}m$). The expression of adhesion molecules of hGFs and MC3T30E1 cells was prominent in group C. Titanium implants with microgrooves on the coronal portion showed firm adhesion to peri-implant soft tissue. Conclusions: Microgrooves on the titanium surface promoted the adhesion of gingival fibroblasts and osteoblastic cells, as well as favorable peri-implant soft tissue sealing.

미니돼지에서 발치 후 즉시 임플란트 매식시 치경부 표면처리가 골재생에 미치는 효과 (THE EFFECT OF SURFACE TREATMENT OF THE CERVICAL AREA OF IMPLANT ON BONE REGENERATION IN MINI-PIG)

  • 조진용;김영준;유민기;국민석;오희균;박홍주
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제34권3호
    • /
    • pp.285-292
    • /
    • 2008
  • Purpose: The present study was performed to evaluate the effect of surface treatment of the cervical area of implant on bone regeneration in fresh extraction socket following implant installation. Materials and methods: The four minipigs, 18 months old and 30 kg weighted, were used. Four premolars of the left side of both the mandible and maxilla were extracted. ${\phi}$3.3 mm and 11.5 mm long US II plus implants (Osstem Implant co., Korea) with resorbable blasting media (RBM) treated surface and US II implants (Osstem Implant co., Korea) with machined surface at the top and RBM surface at lower portion were installed in the socket. Stability of the implant was measured with $Osstell^{TM}$ (Model 6 Resonance Frequency Analyser: Integration Diagnostics Ltd., Sweden). After 2 months of healing, the procedures and measurement of implant stability were repeated in the right side by same method of left side. At four months after first experiment, the animals were sacrificed after measurement of stability of all implants, and biopsies were obtained. Results: Well healed soft tissue and no mobility of the implants were observed in both groups. Histologically satisfactory osseointegration of implants was observed with RBM surface, and no foreign body reaction as well as inflammatory infiltration around implant were found. Furthermore, substantial bone formation and high degree of osseointegration were exhibited at the marginal defects around the cervical area of US II plus implants. However, healing of US II implants was characterized by the incomplete bone substitution and the presence of the connective tissue zone between the implant and newly formed bone. The distance between the implant platform (P) and the most coronal level of bone-to-implant contact (B) after 2 months of healing was $2.66{\pm}0.11$ mm at US II implants group and $1.80{\pm}0.13$mm at US II plus implant group. The P-B distance after 4 months of healing was $2.29{\pm}0.13$mm at US II implants group and $1.25{\pm}0.10$mm at US II plus implants group. The difference between both groups regarding the length of P-B distance was statistically significant(p<0.05). Concerning the resonance frequency analysis (RFA) value, the stability of US II plus implants group showed relatively higher RFA value than US II implants group. Conclusion: The current results suggest that implants with rough surface at the cervical area have an advantage in process of bone regeneration on defect around implant placed in a fresh extraction socket.

Surface characteristics of thermally treated titanium surfaces

  • Lee, Yang-Jin;Cui, De-Zhe;Jeon, Ha-Ra;Chung, Hyun-Ju;Park, Yeong-Joon;Kim, Ok-Su;Kim, Young-Joon
    • Journal of Periodontal and Implant Science
    • /
    • 제42권3호
    • /
    • pp.81-87
    • /
    • 2012
  • Purpose: The characteristics of oxidized titanium (Ti) surfaces varied according to treatment conditions such as duration time and temperature. Thermal oxidation can change Ti surface characteristics, which affect many cellular responses such as cell adhesion, proliferation, and differentiation. Thus, this study was conducted to evaluate the surface characteristics and cell response of thermally treated Ti surfaces. Methods: The samples were divided into 4 groups. Control: machined smooth titanium (Ti-S) was untreated. Group I: Ti-S was treated in a furnace at $300^{\circ}C$ for 30 minutes. Group II: Ti-S was treated at $500^{\circ}C$ for 30 minutes. Group III: Ti-S was treated at $750^{\circ}C$ for 30 minutes. A scanning electron microscope, atomic force microscope, and X-ray diffraction were used to assess surface characteristics and chemical composition. The water contact angle and surface energy were measured to assess physical properties. Results: The titanium dioxide ($TiO_2$) thickness increased as the treatment temperature increased. Additional peaks belonging to rutile $TiO_2$ were only found in group III. The contact angle in group III was significantly lower than any of the other groups. The surface energy significantly increased as the treatment temperature increased, especially in group III. In the 3-(4,5-Dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide assay, after 24 hours of incubation, the assessment of cell viability showed that the optical density of the control had a higher tendency than any other group, but there was no significant difference. However, the alkaline phosphatase activity increased as the temperature increased, especially in group III. Conclusions: Consequently, the surface characteristics and biocompatibility increased as the temperature increased. This indicates that surface modification by thermal treatment could be another useful method for medical and dental implants.

임플란트의 표면처리 유형에 따른 골 치유 양상 (Bone Healing around Screw - shaped Titanium Implants with Three Different Surface Topographies)

  • 고영한;김영준;정현주
    • Journal of Periodontal and Implant Science
    • /
    • 제31권1호
    • /
    • pp.41-57
    • /
    • 2001
  • It is well known that the apposition of bone at implant surface would be influenced by the microstructure of titanium implants. The purpose of this study was to compare bone healing around the screw-shaped titanium implant with three different surface topographies in the canine mandibles by histological and biomechanical evaluation. All mandibular premolars of six mongrel dogs were extracted and implants were placed one month later. The pure titanium implants had different surface topographies: smooth and machined ($Steri-OSS^{(R)}$: Group II); sandblasted and acid-etched ($ITI^{(R)}$, SLA: Group III) surface. The fluorescent dyes were injected on the 2nd (calcein), 4th (oxytetracycline HCI) and 12th (alizarin red) weeks of healing. Dogs were sacrificed at 4 and 12 weeks after implantation. The decalcified and undecalcified specimens were prepared for histological and histo-metrical evaluation of implant-bone contact. Some specimens at 12 weeks after implantation were used for removal torque testing. Histologically, direct bone apposition to implant surface was found in all of the treated groups. More mature and dense bone was observed at the implant-bone interface at 12 weeks than that at 4 weeks after implantation. Under the fluorescent microscope, thick regular green fluorescent lines which mean early bone apposition were observed at the implant-bone interface in Group III, while yellow and red fluorescent areas were found at the implant-bone interface in Group I and II. The average implant-bone contact ratios at 4 weeks of healing were 54.3% in Group I, 57.7% in Group II and 66.2% in Group III. In Group I, implant-bone contact ratio was significantly lower than Group II and III(p<0.05). The average implant-to-bone contact ratios at 12 weeks after implantation were 64.3% in Group I, 66.7% in Group II and 71.2% in Group III. There was no significant difference among the three groups. In Group I and II, the implant-bone contact ratio at 12 weeks increased significantly in comparison to ratio at 4 weeks(p<0.05). The removal torque values at 12 weeks after implantation were 90.9 Ncm in Group I, 81.6 Ncm in Group II and 77.1 Ncm in Group III, which were significantly different(p<0.05). These results suggest that bone healing begin earlier and be better around the surface-treated implants compared to the smooth surface implants. The sandblasted and acid-etched implants showed the most favorable bone response among the three groups during the early healing stage and could reduce the waiting period prior to implant loading.

  • PDF

전기성형술로 제작된 외관의 유지력에 내관의 축면경사도와 표면적이 미치는 영향 (EFFECT OF TAPER AND SURFACE AREA OF INNER CROWN ON THE RETENTIVE FORCE OF ELECTROFORMED OUTER CROWN)

  • 강완근;임장섭;전영찬;정창모;정희찬
    • 대한치과보철학회지
    • /
    • 제44권2호
    • /
    • pp.165-173
    • /
    • 2006
  • Purpose: With gold electroforming system fir the double crown, the secondary crown is electroformed directly onto the primary crown. An even thick layer of high precision can be acquired. It is thought that the retention of electroformed outer crown is primarily acquired by the adhesive force (surface tension) through the saliva which is interposed between precisely fitted inner and outer crown. The purpose of this study was to investigate the effect of taper and surface area of inner crown on the retentive force of electroformed outer crown according to the presence of saliva. Materials and methods: 32 titanium inner crowns with cervical diameter of 8 mm and cone angles of 0, 2, 4, 6 degrees, which had same surface area by regulated height, were machined on a lathe. Another 32 titanium inner crowns with cone angles of 0, 2, 4, 6 degrees, which had doubled surface area by increased cervical diameter. were fabricated. Eight specimens of each group, for a total of 64 titanium inner crowns, were prepared. The electroformed outer crowns were fabricated directly on the inner crowns by using electroforming machine(GAMMAT free, Gramm Technik, Germany). The tertiary frameworks were waxed-up on the electroformed outer crown and cast using nonprecious alloy($Rexillium^(R)III,\;Jeneric^(R)/Pentronh^(R)$ Inc., USA). The cast metal frameworks were sandblasted with alubimium oxides and cemented using resin cement(Superbond C&B, Sun Medical Co., Japan) over the electroformed copings of each specimen. Then, artificial saliva($Taliva^(R)$, Halim Pharm. Co., Korea) was sprayed between the inner and outer crown, and they were connected under 5 kg force. The retentive force was measured by the universal testing machine(Tinius Olsen 1000, Tinius Olsen, USA) with a cross-head speed of 66.67 mm/sec. The direction of cross-head travel was exactly aligned with the path of removal of the respective specimens. This measurement procedures for retentive force of electroformed outer crown with artificial saliva were repeated in the same way without presence of artificial saliva. Results and Conclusion: The following conclusions were drawn: 1. The retentive force of electroformed outer crown was decreased according to increased taper of inner crown(P<.05). 2. The retentive force of electroformed outer crown showed no significant differences according to surface area and the presence of artificial saliva(P>.05).

0.9% 식염수 담금이 레이저 처리 임플란트의 초기 치유기간의 회전 제거력에 미치는 영향 (The effects of saline soaking on the removal torque of titanium implants in rabbit tibia after 10 days)

  • 박정현;조성암
    • 대한치과보철학회지
    • /
    • 제57권4호
    • /
    • pp.328-334
    • /
    • 2019
  • 목적: 0.9% NaCl solution 에 2주간 담근 레이저 처리 임플란트 표면의 친수성 증가현상을 확인하고 그것이 각 임플란트의 초기 치유기간 10일 후에 임플란트의 회전 제거력에 미치는 영향을 확인하고자 한다. 재료 및 방법: 지름 3 mm, 길이 8 mm 되는 10개의 선반 가공된 티타늄 임플란트를 대조군은 레이저 처리하고, 다른 실험군 10개는 레이저 처리 후 2주간 0.9% 생리적 식염수에 담근 후 뉴질랜드산 흰 토끼의 경골에 식립한후, 10일 후에 각각 회전 제거력을 측정하였다. 각 시편의 젖음각과 표면조성 및 형태를 분석하였다. 결과: 10일 후에 실험군의 회전 제거력이 대조군보다 의미있는 증가세를 보였다 (P = .002, < .05). 주사전자 현미경 성분분석과, 형태는 별다른 차이를 보이지 않았다. 결론: 식염수에 담그는 과정은 의미있는 회전 제거력의 증진을 초기기간(10일 후)에 나타낼 수 있다.

성견에서 표면처리된 교정용 마미크로 임플랜트의 골 접촉률 및 동요도 (Bone-implant contact and mobility of surface-fronted orthodontic micro-implants in dogs)

  • 박승현;김성훈;류준하;강윤구;정규림;국윤아
    • 대한치과교정학회지
    • /
    • 제38권6호
    • /
    • pp.416-426
    • /
    • 2008
  • 본 연구는 비글견에 식립된 sandblasted, large grit and acid-etched (SLA) 표면처리된 교정용 마이크로임플랜트와 평활면 마이크로임플랜트에 교정력을 가한 후 시간 경과에 따른 동요도와 골접촉률의 차이를 규명하기 위해 시행되었다. 비글 성견 네 마리를 이용하여 상, 하악 협측과 구개측 골에 대해 SLA 표면처리된 표면처리군 48개, 평활면의 비처리군 48개의 마이크로임 플랜트 96개를 식립하고 2주의 치유기간 후 교정력(150 - 200 g)을 지속적 으로 가했으며 식립 4주 후에 두 마리를 희생시키고, 12주 후에 나머지 2마리를 희생시켰다. 표면처리군과 비처리군 간의 마이크로 임플랜트의 동요도와 골과 임플랜트 간 접촉률을 조직학적인 측면에서 측정 비교하여 다음과 같은 결과를 얻었다. 상악 협측과 구개측에서는 표면처리군과 미처리군의 동요도에서 유의성 있는 차이가 없었으나 하악협측에서는 표면 처리군이 유의하게 안정적인 동요도를 보였다. 마이크로임플랜트와 인접골 간 접촉률은 상악 협측에서는 4주와 12주 모두 표면처리군과 미처리군 간에 유의 한 차이가 없었으나 하악 협측과 구개측의 경우 4주와 12주 모두 표면처리군이 비처리군에 비해 유의하게 높은 접촉률을 보였다. 표면처리군은 비처리군에 비해 임플랜트 주변에서 활발한 골개조가 관찰되었으며 모든 군에서 이물반응은 관찰되지 않았다. 본 연구를 통해 SLA 표면처리된 마이크로임플랜트는 평활면 마이크로임플랜트에 비하여 식립 초기에는 식립 부위에 따라 유의하게 높은 인접골 간 접촉률과 동요도의 안정성을 보임으로써 다양한 크기와 방향의 교정력의 적용이 가능할 것이라 생각한다.

Development of a Micromachined Differential Type Resonant Accelerometer and Its Performance

  • Hyun, Chul;Lee, Jang-Gyu;Kang, Tae-Sam;Sung, Sang-Kyung;Seok, Seon-Ho;Chun, Kuk-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2182-2186
    • /
    • 2003
  • This paper presents the differential type resonant accelerometer (DRXL) and its performance test results. The DRXL is the INS grade, surface micro-machined sensor. The proposed DRXL device produces a differential digital output upon an applied acceleration, and the principle is a gap-dependent electrical stiffness variation of the electrostatic resonator with torsion beam structures. Using this new operating concept, we designed, fabricated and tested the proposed device. The final device was fabricated by using the wafer level vacuum packaging process. To test the performance of the DRXL, a nonlinear self-oscillation loop is designed using describing function technique. The oscillation loop is implemented using discrete electronic elements. The performance test of the DRXL shows that the sensitivity of the accelerometer is 12 Hz/g and its long term bias stability is about $2mg(1{\sigma})$. The turn on repeatability, bandwidth, and dynamic range are 4.38 mg, 100 Hz, and ${\pm}\;70g$, respectively.

  • PDF

항공기용 Al 합금 단조품의 특성 향상을 위한 단조 공정 설계 (Forging Process Design to Improve the Properties of Al Alloy Forged Part for Aerospace)

  • 이영선;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.228-232
    • /
    • 2001
  • Fatigue strength, electrical conductivity and stress-corrosion-cracking resistance are considered as important factors at aircraft Al alloys, therefore Al7050 alloy has been developed to improve such properties. However, hammer-forged Al7050 parts showed the undesirable structures such as severe local grain coarsening and inhomogeneous material flow, resulted in the degraded mechanical properties. In this paper, process conditions are investigated for elimination of the grain coarsening and improved material flow during forging process by both of experiments and FEM analysis. Particular interest has been given to understand role of preform shape on the grain coarsening behavior and magnitude of the hammer forging load The use of preform has been beneficial for reduction of the forging load and elimination of the grain coarsening. However, in the cases of as received bar and the round bar, which was machined to 2.5mm thickness in surface layer, some degree of local grain coarsening behavior has been observed. The optimized preform shape could be properly designed by applying the FEM simulation.

  • PDF

디스크 전극을 이용한 미세 전해 밀링 가공에서의 테이퍼 형상 방지 (Taper Reduction in Micro Electrochemical Milling Using Disk-type Electrode)

  • 김보현;이영수;최덕기;주종남
    • 한국정밀공학회지
    • /
    • 제22권4호
    • /
    • pp.167-172
    • /
    • 2005
  • In this paper. micro electrochemical machining (ECM) for micro structure fabrications is presented. By applying ultra short pulses. the chemical reaction can be restricted only to the region very close to the electrode. Micro ECM is applied to machining micro structures through electrochemical milling process becasuse it doesn't suffer from tool wear. Using this method. 3D micro structures were machined on stainless steel. It was found that micro machining is possible with good surface quality in the low concentration electrolyte,0.1 M H₂SO₄. In ECM, as the machining depth increases, better flushing of electrolyte is required for sufficient ion supply. Layer-by-layer milling is advantageous in flushing. However, layer-by-layer milling causes taper of structures. To reduce the taper, application of a disk-type electrode was introduced. By electrochemical milling, various 3D micro structures including a hemisphere with 60 ㎛ diameter were fabricated.