한국어 형태소 분석은 교착어 특성상 난이도가 높은 작업이다. 그 중에서 형태소의 원형 복원 작업은 규칙이나 기분석 사전 정보 등을 활용하는 방법이 주로 연구되었다. 그러나 이러한 방법들은 어휘 수준의 문맥 정보를 보지 못하기 때문에 원형 복원에 한계가 있다. 본 논문에서는 최근 자연어처리에 연구되고 있는 기계학습 방법인 딥 러닝(deep learning)을 사용하여 형태소의 원형 복원 문제의 해결을 시도하였다. 문맥 정보를 보기 위해 단어 표현(word embedding)을 사용하여 기존의 방법들 보다 높은 성능을 보였다. 실험 결과, '들/VV'과 '듣/VV'의 복원 문제에 대해서 97.97%로 기존의 자연어처리에 쓰이는 기계학습 방법 중 하나인 SVM(Support Vector Machine)의 96.22% 보다 1.75% 높은 성능을 보였다.
Solar energy has been experiencing renewed interest because of the recent economical crisis in Korea. Absorption cooling is one of the promising solar energy utilization technologies. In this study the dynamic performance of a solar driven absorption cooling machine(SDACM) was numerically investigated. The simulated machine is a commercially available water/LiBr single effect absorption chillers driven by hot water from solar collectors. The present study has been directed to investigate the dynamic behavior of a solar cooling system including an absorption chiller, solar collector, a hot water storage tank, fan coil units, and the air-conditioned space. The operation of the system was simulated for 9 hours in varying operation conditions. The variation of temperature and concentration in the system components, and that of heat transfer rates in the system were obtained. It was also found that the room temperature was maintained near the desired value by controlling the mass flow rate of hot water.
The primary element of machining automation is to maximize the utilization of machine tools, which determines the output and lead-time. In particular, 95% of raw materials for wing ribs are cut into chips and 0.6 ton of chips are generated every hour from each machine tool. In order to verify the chip recycling system that controls the chips from the machines in five-axis FMS line, a simulation of the virtual model is constructed using the QUEST simulation program. The optimum speed of the chip conveyor and its operating conditions that directly affect the efficiency of the FMS line are presented including the chip conveyor speed, the maximum capacity of the hopper, and the number of chip compressors.
A probabilistic seismic damage analysis is an essential procedure to identify seismically vulnerable structures, prioritize the seismic retrofit, and ultimately minimize the overall seismic risk. To assess the seismic risk of multiple structures within a region, a large number of nonlinear time-history structural analyses must be conducted and studied. As a result, each assessment requires high computing resources. To overcome this limitation, we explore a deep learning-based metamodel to enable the prediction of the mean and the standard deviation of the seismic damage distribution of track-on steel-plate girder railway bridges in Korea considering the geometric variation. For machine learning training, nonlinear dynamic time-history analyses are performed to generate 800 high-fidelity datasets on the seismic response. Through intensive trial and error, the study is concentrated on developing an optimal machine learning architecture with the pre-identified variables of the physical configuration of the bridge. Additionally, the prediction performance of the proposed method is compared with a previous, well-defined, response surface model. Finally, the statistical testing results indicate that the overall performance of the deep-learning model is improved compared to the response surface model, as its errors are reduced by as much as 61%. In conclusion, the model proposed in this study can be effectively deployed for the seismic fragility and risk assessment of a region with a large number of structures.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권6호
/
pp.1518-1539
/
2024
Artificial intelligence-enabled business models aim to improve decision-making, operational efficiency, innovation, and productivity. The presented systematic literature review is conducted to highlight elucidating the utilization of artificial intelligence (AI) methods and techniques within AI-enabled businesses, the significance and functions of AI-enabled organizational models and frameworks, and the design parameters employed in academic research studies within the AI-enabled business domain. We reviewed 39 empirical studies that were published between 2010 and 2023. The studies that were chosen are classified based on the artificial intelligence business technique, empirical research design, and SLR search protocol criteria. According to the findings, machine learning and artificial intelligence were reported as popular methods used for business process modelling in 19% of the studies. Healthcare was the most experimented business domain used for empirical evaluation in 28% of the primary research. The most common reason for using artificial intelligence in businesses was to improve business intelligence. 51% of main studies claimed to have been carried out as experiments. 53% of the research followed experimental guidelines and were repeatable. For the design of business process modelling, eighteen AI mythology were discovered, as well as seven types of AI modelling goals and principles for organisations. For AI-enabled business models, safety, security, and privacy are key concerns in society. The growth of AI is influencing novel forms of business.
본 연구는 직업분류 및 고용분류별 스트레스, 스트레스 상담, 우울증상, 우울증상 상담 정도를 파악하기 위해 지역사회건강조사 자료를 이차 분석하였다. 직업분류별 및 고용분류별 확실한 비교를 위해 기준 직업군으로 '무직(직업분류 기준항목)'과 '무급가족종사자(고용분류 기준항목)'를 포함하여 한국표준직업분류(6차 개정)에 의한 총 13개의 직업군을 이용하였다. 직업분류 및 고용분류별 스트레스, 스트레스 상담, 우울증상, 우울증상 상담 여부의 교차비에서는 '무직'과 '무급가족종사자'의 스트레스 정도가 대체적으로 더 낮게 나타난 반면, 스트레스 상담, 우울증상, 우울증상 상담에서는 '무직'과 '무급가족종사자'가 오히려 더 높은 교차비를 보였다. '관리직'을 포함한 7개의 직업군은 '무직'보다 스트레스를 많이 받지만(OR > 1), 의료기관 이용률은 낮게 나타났다(OR < 1). '고용주 및 자영업자'와 '임금근로자'가 '무급가족종사자'에 비해 높은 교차비를, 스트레스 상담 및 우울상담에서는 낮은 교차비를 보였다. 본 연구는 정신건강문제 선별 및 관리를 위해 특정 인구집단에 대한 접근을 통해 직장 내 정신보건서비스 제공에 대한 필요성을 시사하고 있다.
지구관측위성은 다양한 분야에서 활용되고 있으며 높은 활용성과 시장성으로 인해 많은 국가에서 개발 하고 있다. 우리나라는 국가 우주개발 계획에 따라 다양한 지구관측위성을 개발하고 있으며, 그 중에서 다목적 실용위성 시리즈는 가장 대표적인 저궤도 위성이다. 지금까지 총 5기의 다목적실용위성이 발사되어 국가 영상 수요를 충족하고 있으며, 국가기관을 비롯하여 다양한 분야에서 활용되고 있다. 본 특별호에서는 다목적실용 위성 시리즈의 다양한 영상자료를 이용한 자료처리, 분석 및 활용과 관련된 연구에 대해서 소개하고자 한다. 한편 후속 다목적실용위성 영상자료의 차질 없는 활용을 위해서는 고해상도 영상에 적합한 자료처리 및 활용 연구가 계속되어야 하며, 특별호를 통해서 관련 연구 내용이 지속적으로 공유될 수 있도록 할 예정이다.
Big data, artificial intelligence (AI), and machine learning are keywords that represent the Fourth industrial Revolution. In addition, as the development of science and technology, the Korean government, public institutions and industries want professionals who can collect, analyze, utilize and predict data. This means that data analysis and utilization education become more important. Education on data analysis and utilization is increasing with trends in other academy. However, it is true that not many academy run long-term and systematic education. Korea Institute of Science and Technology Information (KISTI) is a data ecosystem hub and one of its performance missions has been providing data utilization and analysis education to meet the needs of industries, institutions and governments since 1966. In this study, KISTI's data education was analyzed using the number of curriculum trainees per year from 2001 to 2019. With this data, the change of interest in education in information and data field was analyzed by reflecting social and historical situations. And we identified the characteristics of KISTI and trainees. It means that the identity, characteristics, infrastructure, and resources of the institution have a greater impact on the trainees' interest of data-use education.In particular, KISTI, as a research institute, conducts research in various fields, including bio, weather, traffic, disaster and so on. And it has various research data in science and technology field. The purpose of this study can provide direction forthe establishment of new curriculum using data that can represent KISTI's strengths and identity. One of the conclusions of this paper would be KISTI's greatest advantages if it could be used in education to analyze and visualize many research data. Finally, through this study, it can expect that KISTI will be able to present a new direction for designing data curricula with quality education that can fulfill its role and responsibilities and highlight its strengths.
최근 급속히 보편화되고 확대되는 드론의 비행 데이터가 엔터테인먼트 기술 분석 자료로 활용이 가능한지의 검증이 매우 필요하다. 특히, 자율화, 지능화의 방법으로 발전하는 엔터테인먼트 드론의 비행과 운용과정을 데이터 분석과 기계학습을 통해서 분석 및 활용할 수 있는지를 확인해야 한다. 본 논문에서는 엔터테인먼트용 드론의 평가에 FC의 데이터를 이용하여 머신러닝 기법으로 활용할 수 있는지를 확인하였다. 그 결과 매빅2나 아나피와 같은 DJI나 Parrot의 FC 데이터는 엔터테인먼트를 위한 머신러닝 분석이 불가능하였다. 이는 데이터가 0.1초 이상의 간격으로 수집됨으로써 GCS와의 다른 데이터들과의 상관성을 찾기 불가능하기 때문이다. 이에 반하여 ARM 프로세서를 채용하여 Nuttx 운영체제로 작동하는 픽스호크의 경우에는 머신러닝 기법의 적용이 가능함을 알 수 있었다. 앞으로 고정익과 회전익 비행 정보들을 구분하여 엔터테인먼트의 특성 분석이 가능한 기술들을 발전시켜야 한다. 이를 위해서는 모델을 개발하고 체계적인 데이터 수집과 연구가 진행되어야 할 것이다.
Purpose: The franchise system started by Singer Sewing Machine in the US is acting as a national economic growth engine in terms of job creation and economic growth. In China, the franchise system was introduced in the mid-1980s. And since joining the WTO, it has grown by 5-6% every year. However, compared to the growth rate of franchises, studies on shared growth between the chain headquarters and franchisees were insufficient. Accordingly, recent studies related to shared growth between the chain headquarters and franchisees have been active in China. The purpose of this study is to examine the knowledge transfer system between the knowledge creation, knowledge sharing, and the use of knowledge by franchise chain headquarters in China. In addition, the relationship between franchise satisfaction and performance is identified. Research design, data, and methodology: The data were collected from franchise stores in Sichuan, China, and were conducted with the help of ○○ Incubation, a Sichuan Province-certified incubator. From November 2020 to January 2021, 350 copies of the questionnaire were distributed in China, and 264 copies were returned. Of these, 44 copies with insincere answers and response errors were excluded, and 222 copies were used for analysis. The data were analyzed with SPSS 22.0 and AMOS 22.0 statistical packages. Result: The results of this study are as follows. First, knowledge creation has been shown to have a statistically significant impact on knowledge sharing and knowledge utilization. In particular, the effectiveness of knowledge creation was higher in knowledge sharing than in knowledge utilization. And we can see that knowledge sharing also has a statistically significant e ffect on knowledge utilization. Second, knowledge sharing was not significant for transaction satisfaction and business performance, and knowledge utilization was significant for transaction satisfaction and business performance. These results can be said to mean less interdependence of the Chinese franchise system. Finally, transaction satisfaction was statistically significant to business performance. The purpose of this study was to examine the importance of knowledge management to secure long-term competitive advantage for Chinese franchises. This study shows that knowledge sharing is important for long-term franchise growth. And we can see that there is a lack of knowledge sharing methods in the case of franchises in China. I n addition, it was found that the growth of Chinese franchises requires systematization of communication, information sharing measures and timing, help from chain headquarters, and mutual responsibility awareness.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.