Abstract
Recently, drones are rapidly becoming common and expanding. There is a great need for diversity in whether drone flight data can be used as entertainment technology analysis data. In particular, it is necessary to check whether it is possible to analyze and utilize the flight and operation process of entertainment drones, which are developing through autonomous and intelligent methods, through data analysis and machine learning. In this paper, it was confirmed whether it can be used as a machine learning technology by using FC data in the evaluation of drones for entertainment. As a result, FC data from DJI and Parrot such as Mavic2 and Anafi were unable to analyze machine learning for entertainment. It is because data is collected at intervals of 0.1 second or more, so that it is impossible to find correlation with other data with GCS. On the other hand, it was found that machine learning technologies can be applied in the case of Fixhawk, which used an ARM processor and operates with the Nuttx OS. In the future, it is necessary to develop technologies capable of analyzing the characteristics of entertainment by dividing fixed-wing and rotary-wing flight information. For this, a model shoud be developed, and systematic big data collection and research should be conducted.
최근 급속히 보편화되고 확대되는 드론의 비행 데이터가 엔터테인먼트 기술 분석 자료로 활용이 가능한지의 검증이 매우 필요하다. 특히, 자율화, 지능화의 방법으로 발전하는 엔터테인먼트 드론의 비행과 운용과정을 데이터 분석과 기계학습을 통해서 분석 및 활용할 수 있는지를 확인해야 한다. 본 논문에서는 엔터테인먼트용 드론의 평가에 FC의 데이터를 이용하여 머신러닝 기법으로 활용할 수 있는지를 확인하였다. 그 결과 매빅2나 아나피와 같은 DJI나 Parrot의 FC 데이터는 엔터테인먼트를 위한 머신러닝 분석이 불가능하였다. 이는 데이터가 0.1초 이상의 간격으로 수집됨으로써 GCS와의 다른 데이터들과의 상관성을 찾기 불가능하기 때문이다. 이에 반하여 ARM 프로세서를 채용하여 Nuttx 운영체제로 작동하는 픽스호크의 경우에는 머신러닝 기법의 적용이 가능함을 알 수 있었다. 앞으로 고정익과 회전익 비행 정보들을 구분하여 엔터테인먼트의 특성 분석이 가능한 기술들을 발전시켜야 한다. 이를 위해서는 모델을 개발하고 체계적인 데이터 수집과 연구가 진행되어야 할 것이다.