최근 각종 사업 분야에서 기업들은 기존 메신저 플랫폼에 인공지능을 더하여 다양한 환경을 대상으로 챗봇 서비스 지원에 주력하고 있다. 취업알선 분야의 기관에서도 취업상담 서비스 품질 제고와 상담 인력 해소를 위해 챗봇 서비스를 요구한다. 일반적인 텍스트 기반 챗봇은 입력된 사용자 문장을 학습된 문장으로 분류하여 적합한 답변을 사용자에게 제공한다. 최근 소셜 네트워크 서비스의 활성화 영향으로 챗봇에 입력되는 사용자 문장은 단문으로 입력되는 경향이 있다. 따라서 단문 분류의 성능향상은 챗봇 서비스의 성능향상에 기여할 수 있다. 본 연구는 취업알선 챗봇을 위한 단문 분류 강화를 위해 기존 연구의 개념 정보뿐만 아니라 번역문 정보를 활용하는 방법인 T-EBOW (Translation-Extended Bag Of Words)를 제안한다. T-EBOW를 기계학습 분류 모델에 적용한 단문 분류의 성능은 기존 방법에 비해 우수한 성능 평가 결과를 보였다.
Generative adversarial networks(GANs) have received great attention in the machine learning field for their capacity to model high-dimensional and complex data distribution implicitly and generate new data samples from the model distribution. This paper investigates the model training methodology, architecture, and various applications of generative adversarial networks. Experimental evaluation is also conducted for generating synthetic image dataset for defense using two types of GANs. The first one is for military image generation utilizing the deep convolutional generative adversarial networks(DCGAN). The other is for visible-to-infrared image translation utilizing the cycle-consistent generative adversarial networks(CycleGAN). Each model can yield a great diversity of high-fidelity synthetic images compared to training ones. This result opens up the possibility of using inexpensive synthetic images for training neural networks while avoiding the enormous expense of collecting large amounts of hand-annotated real dataset.
자연어 처리는 최근 기계학습 및 딥러닝 기술의 발전과 적용으로 성능이 빠르게 향상되고 있으며, 이로 인해 활용 분야도 넓어지고 있다. 특히 비정형 텍스트 데이터에 대한 분석 요구가 증가함에 따라 자연어 처리에 대한 관심도 더욱 높아지고 있다. 그러나 자연어 전처리 과정 및 기계학습과 딥러닝 이론의 복잡함과 어려움으로 인해 아직도 자연어 처리 활용의 장벽이 높은 편이다. 본 논문에서는 자연어 처리의 전반적인 이해를 위해 현재 활발히 연구되고 있는 자연어 처리의 주요 분야와 기계학습 및 딥러닝을 중심으로 한 주요 기술의 현황에 대해 살펴봄으로써, 보다 쉽게 자연어 처리에 대해 이해하고 활용할 수 있는 기반을 제공하고자 한다. 이를 위해 인공지능 기술 분류체계의 변화를 통해 자연어 처리의 비중 및 변화 과정을 살펴보았으며, 기계학습과 딥러닝을 기반으로 한 자연어 처리 주요 분야를 언어 모델, 문서 분류, 문서 생성, 문서 요약, 질의응답, 기계번역으로 나누어 정리하고 각 분야에서 가장 뛰어난 성능을 보이는 모형들을 살펴보았다. 그리고, 자연어 처리에서 활용되고 있는 주요 딥러닝 모형들에 대해 정리하고 자연어 처리 분야에서 사용되는 데이터셋과 성능평가를 위한 평가지표에 대해 정리하였다. 본 논문을 통해, 자연어 처리를 자신의 분야에서 다양한 목적으로 활용하고자 하는 연구자들이 자연어 처리의 전반적인 기술 현황에 대해 이해하고, 자연어 처리의 주요 기술 분야와 주로 사용되는 딥러닝 모형 및 데이터셋과 평가지표에 대해 보다 쉽게 파악할 수 있기를 기대한다.
본 논문에서는 영어 학습을 도와주고 영한 기계번역 시스템의 평가를 통해 기계번역 시스템의 성능 개선을 위한 도구인 HS-eLearner를 설계, 구현하였다. HS-eLearner는 영어 문장의 번역 뿐만 아니라 입력 문장의 구조, 문장에 사용된 단어의 의미를 제공하여 사용자의 효과적인 영어 학습을 보조하는 기능을 가진다. 또한 사용자가 번역된 문장을 평가하여 사용자에 의한 객관적인 번역 시스템에 대한 평가를 기대할 수 있으며 평가 결과를 개발자에게 제공함으로써 번역 시스템의 성능 개선에 사용될 수 있다. 즉 사용자와 개발자간의 커뮤니케이션을 제공함으로써 사용자의 요구를 수용할 수 있는 시스템으로의 개선을 용이하게 한다.
본 논문에서는 인터넷에서 대부분 정보의 표현 형태인 언어의 자동화된 분석을 위한 접근 방법으로 언어학적 접근과 전산학적 처리의 관점을 살펴본다. 또한, 대용량의 자료에 대한 실용적인 정보 색인과 검색, 정보추출, 기계번역 등을 위해 형태소분석, 구문분석 및 의미분석의 각 단계에서 실용적인 분석의 단위를 살펴보고, 언어학에 기반한 형태론적 단위보다 구문적 최장 분석 단위를 제안한다. 그리고 대량의 문서에 대한 실험을 통해, 제안하는 언어분석의 단위가 언어처리 과정에서 발생하는 모호성을 축소하는 제약으로도 사용될 수 있음을 보인다.
일본어 특허 문서를 번역하기 위해 개발이 시작된 COBALT-J/K(COllocation - BAsed Language Translator from Japanese to Korea)는 현재 그 번역 대상을 모든 일본어 문서로 확장해 곧, 상용 시스템으로 전환을 바라보고 있다. 이런 시점에서 일반 문서를 대상으로 하는 범용 기계 번역 시스템의 관점에서 시스템을 평가하여 문제점을 찾고, COBALT-J/K가 우선적으로 해결하고자 한 문제들이 올바르게 해결되었는지를 살피고자 한다. 이를 위한 평가 방법으로 문형별로 분류된 다수의 일본어 문장에 대하여 실제 번역을 하여 한국어 번역문과 일본어 원문을 비교하는 방식으로 분석하였으며, 현재 시판되고 있는 J-Seoul에 대해서도 같은 방법으로 실험한 결과를 얻은 후, 이 결과는 평가의 보조 자료로 삼았다.
As optical fiber communication grows, the fiber alignment become the focus of industrial attention. This greatly influence the overall production rates for the opto-electric products. We proposed multi-axis nano positioning stage for optical fiber alignment. This device has 3 DOF translation and sub nanometer resolution. This nano stage consist of 3 PZT-driven flexure stages which are stacked parallel. The displacement of it is measured with capacitance gauge and is controlled by computer-embedded main controller. The design process of flexure stage using FEM is proposed and the performance evaluation of this system is verified with experiments.
한국 문학이 세계적으로 관심을 받게 됨에 따라 해외 출판시장에서의 수요가 지속적으로 증가하고 있다. 따라서 해외 출판시 도서 판매량의 예측과 과거 해외 독자들의 선호도가 높았던 도서들의 특징을 분석하는 것이 중요하다. 본 논문에서는 최근 5년간 해외 출간된 도서 중에서 굿셀러로 분류되는 누적 5천 부 이상 판매 여부 예측 모델을 제안하고 굿셀러의 요인이 되는 변수들을 분석하였다. 이를 위해, XGBoost, Gradient Boosting, Adaboost, LightGBM, Random Forest의 다섯 개 앙상블 학습 모델과 Support Vector Machine, Logistic Regression, Deep Learning을 적용한 결과, 불균형 데이터 문제 해결에 앙상블 알고리즘이 큰 효과를 보였음을 확인했으며, 그 중에서도 LightGMB 모델이 99.86%의 AUC 값을 얻어 가장 좋은 예측 성능을 보임을 검증하였다. 예측을 위해 사용된 변수 중 가장 중요한 변수는 작가의 해외 출간 횟수로 나타났으며, 평점 평균, 상위 출판 시장 규모를 가진 국가에서 출판 여부와 평점 참여자 수 등이 중요한 변수로 나타났다. 또한, 굿셀러 도서에 대한 독자들의 반응을 분석하기 위해서, 굿셀러 도서 중에서도 가장 많이 판매된 4권의 작품 리뷰에 대해 텍스트 마이닝을 실시하였다. 분석 결과 스토리, 등장인물, 작가 순으로 관심을 둔 리뷰가 많았음을 알 수 있었으며, 평점이 낮은 리뷰로부터 번역 키워드가 도출된 것으로 보아, 번역에 대한 지원을 확대하는 것이 필요할 것으로 보인다.
본 논문은 기계번역 시스템의 성능평가를 위한 '핵심어 전달율 측정' 방안에 대해서 기술한다. 기계번역 시스템의 성능평가는 두 가지 측면으로 고려될 수 있다. 첫 번째는 객관적인 평가로 IBM에서 주창한 BLEU score 측정이나 NIST의 NIST score 측정이 그 예이다. 객관적인 평가는 평가자의 주관적인 판단이나 언어적인 특성을 배제한 방법으로 프로그램을 통해 자동으로 fluency와 adequacy를 측정하여 성능을 평가한다. 다음은 주관적인 평가이다. 주관적인 평가는 평가자의 평가를 통해 번역의 품질을 평가하는 방법이다. 주관적 평가 방법의 대표적인 것으로는 NESPOLE이나 LDC가 있다. 주관적인 평가는 평가자의 정확한 판단으로 신뢰할만한 성능평가 결과를 도출하지만, 시간과 비용이 많이 들고, 재사용할 수 없다는 단점이 있다. 본 논문에서는 이러한 문제를 해결하기 위해, 번역대상 문장에서 핵심어를 추출하고, 그 핵심어가 기계번역 시스템의 수행결과에 전달된 정도를 자동으로 측정하는 새로운 평가방법인 '핵심어 전달율 측정' 방안을 제안한다. 이는 성능평가의 비용과 시간을 절약하고, 주관적 평가와 유사한 신뢰성 있는 평가결과를 얻을 수 있는 좋은 지표가 될 수 있을 것으로 기대한다.
일-한 기계 번역을 연구하는 많은 연구자들은 양국어의 문절-어절 단위의 어순 일치와 같은 구조적 유사성을 최대한 이용하기 위해 직접 번역 방식을 채택하고 있다. 그러나, 일본어와 한국어 술부간에는 대응하는 품사의 불일치 및 국부적인 어순의 불일치 등이 어려운 문제로 남아 있다. 본 논문에서는 이들 술부 표현의 불일치를 해결하기 위해 이미 제안하였던 "양상 테이블을 기반으로 한 한국어 술부의 생성 방법"에 대해 좀더 체계적인 평가를 하고자 한다. 이 방법은 술부만을 대상으로 하는 추상적이고 의미 기호적인 양상 자질(modality feature)을 테이블화(양상 테이블)하여, 양국어의 술부 표현의 피봇(pivot)으로 이용함으로써 술부 양상 표현의 효과적인 번역을 가능하게 하였다. 일본어 499 문을 대상으로 실제 술부의 번역처리를 시행해 본 결과, 약 97.7%가 자연스럽게 번역됨을 확인하였다. 특히, 술부의 생성 부분은 일본어에 의존하지 않는 양상 테이블을 도입함으로써 일-한뿐만 아니라 다른 언어로부터의 한국어 술부 생성에도 적용시킬 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.