• Title/Summary/Keyword: machine learning modeling

Search Result 287, Processing Time 0.026 seconds

Research Trends Analysis of Machine Learning and Deep Learning: Focused on the Topic Modeling (머신러닝 및 딥러닝 연구동향 분석: 토픽모델링을 중심으로)

  • Kim, Chang-Sik;Kim, Namgyu;Kwahk, Kee-Young
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.2
    • /
    • pp.19-28
    • /
    • 2019
  • The purpose of this study is to examine the trends on machine learning and deep learning research in the published journals from the Web of Science Database. To achieve the study purpose, we used the abstracts of 20,664 articles published between 1990 and 2017, which include the word 'machine learning', 'deep learning', and 'artificial neural network' in their titles. Twenty major research topics were identified from topic modeling analysis and they were inclusive of classification accuracy, machine learning, optimization problem, time series model, temperature flow, engine variable, neuron layer, spectrum sample, image feature, strength property, extreme machine learning, control system, energy power, cancer patient, descriptor compound, fault diagnosis, soil map, concentration removal, protein gene, and job problem. The analysis of the time-series linear regression showed that all identified topics in machine learning research were 'hot' ones.

Modeling of AutoML using Colored Petri Net

  • Yo-Seob, Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.420-426
    • /
    • 2022
  • Developing a machine learning model and putting it into production goes through a number of steps. Automated Machine Learning(AutoML) appeared to increase productivity and efficiency by automating inefficient tasks that occur while repeating this process whenever machine learning is applied. The high degree of automation of AutoML models allows non-experts to use machine learning models and techniques without the need to become machine learning experts. Automating the process of applying machine learning end-to-end with AutoML models has the added benefit of creating simpler solutions, generating these solutions faster, and often generating models that outperform hand-designed models. In this paper, the AutoML data is collected and AutoML's Color Petri net model is created and analyzed based on it.

A Case Study on Machine Learning Applications and Performance Improvement in Learning Algorithm (기계학습 응용 및 학습 알고리즘 성능 개선방안 사례연구)

  • Lee, Hohyun;Chung, Seung-Hyun;Choi, Eun-Jung
    • Journal of Digital Convergence
    • /
    • v.14 no.2
    • /
    • pp.245-258
    • /
    • 2016
  • This paper aims to present the way to bring about significant results through performance improvement of learning algorithm in the research applying to machine learning. Research papers showing the results from machine learning methods were collected as data for this case study. In addition, suitable machine learning methods for each field were selected and suggested in this paper. As a result, SVM for engineering, decision-making tree algorithm for medical science, and SVM for other fields showed their efficiency in terms of their frequent use cases and classification/prediction. By analyzing cases of machine learning application, general characterization of application plans is drawn. Machine learning application has three steps: (1) data collection; (2) data learning through algorithm; and (3) significance test on algorithm. Performance is improved in each step by combining algorithm. Ways of performance improvement are classified as multiple machine learning structure modeling, $+{\alpha}$ machine learning structure modeling, and so forth.

Machine Learning Approaches to Corn Yield Estimation Using Satellite Images and Climate Data: A Case of Iowa State

  • Kim, Nari;Lee, Yang-Won
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.383-390
    • /
    • 2016
  • Remote sensing data has been widely used in the estimation of crop yields by employing statistical methods such as regression model. Machine learning, which is an efficient empirical method for classification and prediction, is another approach to crop yield estimation. This paper described the corn yield estimation in Iowa State using four machine learning approaches such as SVM (Support Vector Machine), RF (Random Forest), ERT (Extremely Randomized Trees) and DL (Deep Learning). Also, comparisons of the validation statistics among them were presented. To examine the seasonal sensitivities of the corn yields, three period groups were set up: (1) MJJAS (May to September), (2) JA (July and August) and (3) OC (optimal combination of month). In overall, the DL method showed the highest accuracies in terms of the correlation coefficient for the three period groups. The accuracies were relatively favorable in the OC group, which indicates the optimal combination of month can be significant in statistical modeling of crop yields. The differences between our predictions and USDA (United States Department of Agriculture) statistics were about 6-8 %, which shows the machine learning approaches can be a viable option for crop yield modeling. In particular, the DL showed more stable results by overcoming the overfitting problem of generic machine learning methods.

Review on Applications of Machine Learning in Coastal and Ocean Engineering

  • Kim, Taeyoon;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.194-210
    • /
    • 2022
  • Recently, an analysis method using machine learning for solving problems in coastal and ocean engineering has been highlighted. Machine learning models are effective modeling tools for predicting specific parameters by learning complex relationships based on a specified dataset. In coastal and ocean engineering, various studies have been conducted to predict dependent variables such as wave parameters, tides, storm surges, design parameters, and shoreline fluctuations. Herein, we introduce and describe the application trend of machine learning models in coastal and ocean engineering. Based on the results of various studies, machine learning models are an effective alternative to approaches involving data requirements, time-consuming fluid dynamics, and numerical models. In addition, machine learning can be successfully applied for solving various problems in coastal and ocean engineering. However, to achieve accurate predictions, model development should be conducted in addition to data preprocessing and cost calculation. Furthermore, applicability to various systems and quantifiable evaluations of uncertainty should be considered.

Trend Analysis of Korea Papers in the Fields of 'Artificial Intelligence', 'Machine Learning' and 'Deep Learning' ('인공지능', '기계학습', '딥 러닝' 분야의 국내 논문 동향 분석)

  • Park, Hong-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.4
    • /
    • pp.283-292
    • /
    • 2020
  • Artificial intelligence, which is one of the representative images of the 4th industrial revolution, has been highly recognized since 2016. This paper analyzed domestic paper trends for 'Artificial Intelligence', 'Machine Learning', and 'Deep Learning' among the domestic papers provided by the Korea Academic Education and Information Service. There are approximately 10,000 searched papers, and word count analysis, topic modeling and semantic network is used to analyze paper's trends. As a result of analyzing the extracted papers, compared to 2015, in 2016, it increased 600% in the field of artificial intelligence, 176% in machine learning, and 316% in the field of deep learning. In machine learning, a support vector machine model has been studied, and in deep learning, convolutional neural networks using TensorFlow are widely used in deep learning. This paper can provide help in setting future research directions in the fields of 'artificial intelligence', 'machine learning', and 'deep learning'.

Modeling on Expansion Behavior of Gwangan Bridge using Machine Learning Techniques and Structural Monitoring Data (머신러닝 기법과 계측 모니터링 데이터를 이용한 광안대교 신축거동 모델링)

  • Park, Ji Hyun;Shin, Sung Woo;Kim, Soo Yong
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.42-49
    • /
    • 2018
  • In this study, we have developed a prediction model for expansion and contraction behaviors of expansion joint in Gwangan Bridge using machine learning techniques and bridge monitoring data. In the development of the prediction model, two famous machine learning techniques, multiple regression analysis (MRA) and artificial neural network (ANN), were employed. Structural monitoring data obtained from bridge monitoring system of Gwangan Bridge were used to train and validate the developed models. From the results, it was found that the expansion and contraction behaviors predicted by the developed models are matched well with actual expansion and contraction behaviors of Gwangan Bridge. Therefore, it can be concluded that both MRA and ANN models can be used to predict the expansion and contraction behaviors of Gwangan Bridge without actual measurements of those behaviors.

Modeling with Thin Film Thickness using Machine Learning

  • Kim, Dong Hwan;Choi, Jeong Eun;Ha, Tae Min;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.48-52
    • /
    • 2019
  • Virtual metrology, which is one of APC techniques, is a method to predict characteristics of manufactured films using machine learning with saving time and resources. As the photoresist is no longer a mask material for use in high aspect ratios as the CD is reduced, hard mask is introduced to solve such problems. Among many types of hard mask materials, amorphous carbon layer(ACL) is widely investigated due to its advantages of high etch selectivity than conventional photoresist, high optical transmittance, easy deposition process, and removability by oxygen plasma. In this study, VM using different machine learning algorithms is applied to predict the thickness of ACL and trained models are evaluated which model shows best prediction performance. ACL specimens are deposited by plasma enhanced chemical vapor deposition(PECVD) with four different process parameters(Pressure, RF power, $C_3H_6$ gas flow, $N_2$ gas flow). Gradient boosting regression(GBR) algorithm, random forest regression(RFR) algorithm, and neural network(NN) are selected for modeling. The model using gradient boosting algorithm shows most proper performance with higher R-squared value. A model for predicting the thickness of the ACL film within the abovementioned conditions has been successfully constructed.

Modeling of Magentic Levitation Logistics Transport System Using Extreme Learning Machine (Extreme Learning Machine을 이용한 자기부상 물류이송시스템 모델링)

  • Lee, Bo-Hoon;Cho, Jae-Hoon;Kim, Yong-Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.269-275
    • /
    • 2013
  • In this paper, a new modeling method of a magnetic levitation(Maglev) system using extreme learning machine(ELM) is proposed. The linearized methods using Taylor Series expansion has been used for modeling of a Maglev system. However, the numerical method has some drawbacks when dealing with the components with high nonlinearity of a Maglev system. To overcome this problem, we propose a new modeling method of the Maglev system with electro magnetic suspension, which is based on ELM with fast learning time than conventional neural networks. In the proposed method, the initial input weights and hidden biases of the method are usually randomly chosen, and the output weights are analytically determined by using Moore-Penrose generalized inverse. matrix Experimental results show that the proposed method can achieve better performance for modeling of Maglev system than the previous numerical method.

Machine Learning Based Neighbor Path Selection Model in a Communication Network

  • Lee, Yong-Jin
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.56-61
    • /
    • 2021
  • Neighbor path selection is to pre-select alternate routes in case geographically correlated failures occur simultaneously on the communication network. Conventional heuristic-based algorithms no longer improve solutions because they cannot sufficiently utilize historical failure information. We present a novel solution model for neighbor path selection by using machine learning technique. Our proposed machine learning neighbor path selection (ML-NPS) model is composed of five modules- random graph generation, data set creation, machine learning modeling, neighbor path prediction, and path information acquisition. It is implemented by Python with Keras on Tensorflow and executed on the tiny computer, Raspberry PI 4B. Performance evaluations via numerical simulation show that the neighbor path communication success probability of our model is better than that of the conventional heuristic by 26% on the average.