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Abstract
Remote sensing data has been widely used in the estimation of crop yields by employing statistical methods 

such as regression model. Machine learning, which is an efficient empirical method for classification and 
prediction, is another approach to crop yield estimation. This paper described the corn yield estimation in Iowa 
State using four machine learning approaches such as SVM (Support Vector Machine), RF (Random Forest), 
ERT (Extremely Randomized Trees) and DL (Deep Learning). Also, comparisons of the validation statistics 
among them were presented. To examine the seasonal sensitivities of the corn yields, three period groups were 
set up: (1) MJJAS (May to September), (2) JA (July and August) and (3) OC (optimal combination of month). In 
overall, the DL method showed the highest accuracies in terms of the correlation coefficient for the three period 
groups. The accuracies were relatively favorable in the OC group, which indicates the optimal combination of 
month can be significant in statistical modeling of crop yields. The differences between our predictions and 
USDA (United States Department of Agriculture) statistics were about 6-8 %, which shows the machine learning 
approaches can be a viable option for crop yield modeling. In particular, the DL showed more stable results by 
overcoming the overfitting problem of generic machine learning methods.
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1. Introduction

Monitoring crop yield is important for many agronomy 
issues such as farming management, food security and 
international crop trade. Because South Korea highly depends 
on imports of most major grains except for rice, reasonable 
estimations of crop yields are more required under recent 
conditions of climate changes and various disasters.

Remote sensing data has been widely used in the 
estimation of crop yields by employing statistical methods 
such as regression model. Prasad et al. (2006) conducted 
multivariate regression analyses to estimate corn and 
soybean yields in Iowa using MODIS (Moderate Resolution 
Imaging Spectroradiometer) NDVI (Normalized Difference 

Vegetation Index), climate factors and soil moisture. Ren et 
al. (2008) presented regression models for the estimation 
of winter wheat yields using MODIS NDVI and weather 
data in Shandong, China. Kim et al. (2014) estimated 
corn and soybean yields using several MODIS products 
and climatic variables for Midwestern United States (US) 
and represented prediction errors of about 10 %. Hong et 
al. (2015) built multiple regression models using MODIS 
NDVI and weather data to estimate rice yields in North 
Korea and showed the RMSE of 0.27 ton/ha. Most of the 
previous studies are based on the multivariate regression 
analysis using the relationship between crop yields and 
agro-environmental factors such as vegetation index, 
climate variables and soil properties.
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Machine learning, which is an efficient empirical method 
for classification and prediction, is another approach to crop 
yield estimation. Jiang et al. (2004) adopted ANN (Artificial 
Neural Network) technique for estimation of winter wheat 
yields using AVHRR (Advanced Very High Resolution 
Radiometer) dataset, and the ANN model showed a higher 
accuracy than multivariate regression models. Jaikla et al. 
(2008) estimated rice yields using SVM (Support Vector 
Machine) and compared the result with the simulation of 
DSSAT (Decision Support System for Acrotechnology 
Transfer) model, which showed a similar performance. 
Kuwata and Shibasaki (2015) employed DL (Deep 
Learning) methods for estimation of corn yields for Illinois 
and presented that the DL contributed to higher accuracy 
than SVM. Despite the efficient predictability of machine 
learning techniques, the applications in crop yield estimation 
are relatively insufficient, and the comparative studies among 
various machine learning methods for crop yield estimation 
have not reported yet.

The objective of this study is to estimate crop yields by 
employing several major techniques for machine learning 
such as SVM, RF (Random Forest), ERT (Extremely 
Randomized Trees) and DL, and to present the comparisons 
of validation statistics among them. We used satellite images 
from MODIS and the climate reanalysis data created by 
PRISM (Parameter-Elevation Regressions on Independent 
Slopes Model) for the machine learning analyses. To improve 
the prediction accuracies according to phenology effects, 
we set up three types of data period: (1) May to September, 
(2) July and August and (3) an optimal combination of the 
months.

2. Data and Method

2.1 Study area

Iowa is a state in the Midwestern US and belongs to the 
Corn Belt (Fig. 1). Iowa produces approximately 18 % of 
the US corn yields, which is the highest ranking in the US 
(USDA, 2012). Out of the 99 counties of Iowa State, we 
selected 94 counties whose cropland exceeded 10 % of the 
county area. The study period is between 2004 and 2014 
according to the data availability.

2.2 Data

2.2.1 Remote sensing data

Satellite remote sensing data was acquired from NASA 
(National Aeronautics and Space Administration) and ESA 
(European Space Agency) CCI (Climate Change Initiative). 
The Terra/MODIS products by NASA such as NDVI, EVI 
(Enhanced Vegetation Index), LAI (Leaf Area Index), FPAR 
(Fraction of Photosynthetically Active Radiation), GPP 
(Gross Primary Production) and ET (Evapotranspiration) 
are closely related to crop yields. Also, SM (Soil Moisture) 
dataset was obtained from ESA CCI, which produces the most 
complete and consistent global soil moisture data on the grid 
of 0.25° using active and passive microwave sensors. Table 1 
shows the summary of dataset used. Previous studies (Prasad 
et al., 2006; Na et al., 2014; Kim et al., 2014) presented these 
variables were associated with the corn yield.

2.2.2 Climate data

The PRISM Climate Group (http://www.prism.
oregonstate.edu/) provides daily and monthly reanalysis 
of seven climate elements in the US: precipitation (PPT), 
maximum temperature (Tmax), minimum temperature 
(Tmin), mean temperature (Tmean), mean dew point 
temperature (TDmean), minimum vapor pressure deficit 
(VPDmin) and maximum vapor pressure deficit (VPDmax). 

Fig. 1. Study area
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We used monthly data for PPT, Tmax, Tmin, Tmean at the 
4-km resolution.

2.2.3 Crop yield data

As a reference dataset, county-level yield statistics of 
corn were obtained from the NASS (National Agricultural 
Statistics Service) of USDA (United States Department of 
Agriculture) (http://quickstats.nass.usda.gov). The unit of 
corn yield (bushels per acre) was converted to ton per hectare 
for convenience sake.

2.2.4 Data processing

Because cropland areas for each county should be first 
determined, we extracted the pixels which were recorded as 
cropland (land cover ID = 12) throughout the period of 2004-
2014 from the MODIS land cover data. Fig. 2 shows that the 
distribution of the cropland pixels is similar to the pattern of 
major counties for corn production in Iowa. For these cropland 
pixels, we constructed a database including satellite images 
and climate variables. Crop yield statistics were the values 
accumulated by county, so the satellite and climate data need 
to be averaged at the county level. We employed the zonal 
operation to summarize the pixel values for a given county.

Various environmental factors related to crop yields can 
have different sensitivities to growing seasons. Hence, we 
derived 13 cases for month combination such as MJJAS 
(from May to September), each individual month between 
May and September (May, Jun, Jul, Aug and Sep), two 
successive months (MJ, JJ, JA and AS), and three successive 
months (MJJ, JJA and JAS) for calculation of the correlation 
coefficients (Table 2). From these combinations, we selected 
three period groups: (1) MJJAS for the whole growing 
season, (2) JA as the group having mostly highest correlation 
coefficients and (3) OC for the optimal combination of the 
periods in terms of the correlation coefficient (shaded in 
gray in Table 2). In order to estimate the corn yield in the 94 
counties in Iowa, we built a matchup database consisting of 
11 input variables from satellite images (NDVI, EVI, LAI, 
FPAR, GPP, ET and SM) and climate dataset (PPT, Tmin, 
Tmax and Tmean) for the three period groups between 2004 
and 2012.

Data Spatial 
Resolution

Temporal 
Resolution Source

Remote 
Sensing

NDVI

1 km

Monthly

NASA 
EarthData

EVI

LAI

8-dayFPAR

GPP

ET Monthly
The 

University of 
Montana

Land 
Cover 500 m Yearly NASA 

EarthData
SM 0.25° Daily ESA CCI

Climate

PPT

4 km Monthly
PRISM
Climate 
Group

Tmax

Tmin

Tmean

Yield Corn County Yearly USDA

Table 1. Summary of dataset used in this study

Fig. 2. (a) Corn yields by county and (b) cropland pixels derived from MODIS land cover data (Iowa State in the dashed line)
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2.3 Methods

2.3.1 Support vector machine

SVM is a powerful technique for general classification 
which can minimize the classification error of existing 
machine learning techniques (Vapnik, 1998). For estimation 
or prediction, regression methods are combined with each 
classified group. SVM finds the optimal separating classifier 
between the two classes by maximizing the margin between 
support vectors using the kernel functions such as linear, 
Gaussian RBF (Radial Basis Function), polynomial and 
hyperbolic tangent (Cortes and Vapnik, 1995; Karatzoglou et 
al., 2006). The Gaussian RBF were used in our experiment.

2.3.2 Random forest

The RF, which is an improved version of CART 
(Classification and Regression Trees), is an ensemble 
method using bootstrap aggregating (Breiman, 2001). RF 
makes decision trees by extracting random samples from 
the training data and predicts results through the vote for 
classification or averaging of the regression using a large 
number of trees (Ali et al., 2012). In our experiment, the 
number of trees were 500, and the number of variables 
used for splitting nodes were set to n/3 (n = number of input 
variables). In addition, the out-of-bag error was used as the 
criterion of model suitability.

2.3.3 Extremely randomized trees

ERT is an ensemble classifier method using unpruned 
decision trees. ERT is different from the other tree-based 
ensemble methods such as RF, in that it divides nodes by 
randomly choosing cut-points and that it uses the complete 
learning sample (no bootstrap copying) to grow the trees 
(Geurts et al., 2006). Such randomization is based on the 
bias-variance analysis like the Friedman test (Friedman, 
1997). Randomization increases bias and variance of 
individual trees, but they can be attenuated by averaging over 
a sufficiently large ensemble of trees. In our experiment, the 
number of trees and the number of variables used for splitting 
nodes were set to the same as those of RF.

2.3.4 Deep learning

DL is a machine learning method similar to ANN but is 
capable of processing the complicated, huge input data by 
learning tasks by using feed-forward multi-layer network 
(Ali et al., 2015). Training process of DL usually consists of 
pre-training and fine-tuning. Pre-training is the phase of data 
processing by using unsupervised learning for improving 
the generalization error of trained deep architectures. Fine-
tuning by supervised learning is performed to improve the 
classification error (Erhan et al., 2010). Our experiment used 
a 200×200 multi-layer network.

MJJAS May June July Aug. Sep. MJ JJ JA AS MJJ JJA JAS

NDVI 0.589 -0.436 0.272 0.637 0.784 0.547 -0.171 0.449 0.805 0.683 0.098 0.663 0.769

EVI 0.684 -0.364 0.278 0.634 0.794 0.602 -0.058 0.490 0.802 0.738 0.254 0.709 0.798

LAI 0.650 -0.417 -0.162 0.551 0.746 0.407 -0.290 0.330 0.721 0.709 0.209 0.625 0.763

FPAR 0.313 -0.411 -0.213 0.517 0.756 0.313 -0.336 0.088 0.743 0.595 -0.126 0.424 0.758

GPP 0.439 -0.401 0.076 0.543 0.554 0.342 -0.173 0.473 0.558 0.505 0.302 0.527 0.542

ET 0.471 -0.149 -0.078 0.187 0.690 0.389 -0.125 0.228 0.697 0.644 0.147 0.535 0.703

SM 0.355 -0.017 0.094 0.465 0.431 0.309 0.051 0.320 0.489 0.388 0.246 0.395 0.456

PPT 0.113 -0.073 -0.011 0.277 0.067 0.047 -0.049 0.131 0.216 0.081 0.087 0.145 0.195

Tmax -0.575 -0.350 -0.448 -0.567 -0.542 -0.136 -0.453 -0.577 -0.597 -0.426 -0.563 -0.595 -0.574

Tmin -0.423 -0.342 -0.347 -0.489 -0.166 0.046 -0.434 -0.513 -0.414 -0.085 -0.544 -0.430 -0.352

Tmean -0.544 -0.357 -0.433 -0.546 -0.374 -0.057 -0.467 -0.573 -0.538 -0.295 -0.576 -0.544 -0.523

Table 2. Correlation coefficients of the variables against corn yields, 2004-2014
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RMSE of 0.844 ton/ha, although three methods (RF, ERT and 
DL) presented similar accuracies. In particular, RF and ERT 
showed very similar results with the correlation coefficients of 
0.651 and 0.654, respectively, and the RMSE were 0.879 and 
0.891 ton/ha, respectively. This is because the two approaches 
are based on regression trees even if their randomization 
strategies for tree splitting are somewhat different. The SVM 
showed the lowest accuracy with the correlation coefficient of 
0.560 and the RMSE of 0.959 ton/ha.

Tables 4 and 5 show the 11-year averaged statistics for JA 
and OC, respectively. When comparing the results of the 
three period groups (MJJAS, JA and OC), the correlation 
coefficients for SVM were almost the same (MJJAS=0.590, 
JA=0.575, OC=0.606), but the RMSE of OC (0.852 ton/ha) 
were somewhat improved than those of MJJAS (0.959 ton/
ha) and JA (0.936 ton/ha). As for RF and ERT, the correlation 
coefficients (JA=0.774 and 0.774, OC=0.772 and 0.785, 
respectively) and the RMSE (JA=0.803 and 0.802 ton/ha, 
OC=0.767 and 0.756 ton/ha, respectively) were similar for 
both JA and OC, showing improved results than those of the 
MJJAS. Hence, it is notable that the seasonal sensitivities of 
corn yields were well captured by the RF and ERT methods. 
The DL method produced the highest accuracies for the 
three period groups in terms of the correlation coefficients 

2.3.5 Validation

The leave-one-year-out cross-validation, also known as 
the Jackknife, was conducted to examine the accuracies 
of the corn yield estimation by machine learning methods. 
We calculated the mean bias, MAE (Mean Absolute Error), 
RMSE (Root-Mean-Square Error), MAPE (Mean Absolute 
Percentage Error) and the correlation coefficient (r) between 
the observed and predicted yields during the period of 2004-
2014.

3. Results and Discussion

We implemented the machine learning methods (SVM, RF, 
ERT and DL) using R libraries (https://www.r-project.org/). 
We first estimated the corn yields using the MJJAS dataset 
for the whole growing season, and the results were compared 
with the USDA yield statistics. The leave-one-year-out cross-
validation produced 11 sets of validation results for each year 
between 2004 and 2014. Table 3 shows the averages of the 
11-year validation results in terms of the mean bias, MAE, 
MAPE, RMSE and r. Fig. 3 shows the scatter plots of the 
predicted corn yields against USDA statistics between 2004 
and 2014. According to the results, DL achieved the highest 
accuracy with the correlation coefficient of 0.776 and the 

Table 4. Validation statistics for the period group JA (July and August)

Table 3. Validation statistics for the period group MJJAS (May to September)

Mean bias
(ton/ha)

MAE
(ton/ha)

RMSE
(ton/ha)

MAPE
(%) r

SVM 0.085 0.721 0.936 8.0 0.575

RF 0.019 0.616 0.803 6.6 0.774

ERT 0.023 0.616 0.802 6.6 0.774

DL -0.169 0.709 0.901 7.5 0.796

Mean bias
(ton/ha)

MAE
(ton/ha)

RMSE
(ton/ha)

MAPE
(%) r

SVM 0.112 0.730 0.959 8.1 0.590

RF 0.063 0.666 0.879 7.3 0.651

ERT 0.091 0.674 0.891 7.4 0.654

DL -0.031 0.657 0.844 6.9 0.776
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Table 5. Validation statistics for the period group OC (optimal combination of month)

Mean bias
(ton/ha)

MAE
(ton/ha)

RMSE
(ton/ha)

MAPE
(%) r

SVM 0.072 0.650 0.852 7.3 0.606
RF 0.002 0.057 0.767 6.3 0.772

ERT 0.015 0.568 0.756 6.1 0.785
DL -0.059 0.608 0.787 6.5 0.800

Fig. 3. Scatter plots for observed vs. predicted corn yields, 2004-2014 (red dots: 2012, black dots: all years except for 2012)
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(MJJAS=0.776, JA=0.796 and OC=0.800, respectively).
Moreover, the DL presented more stable results in the 

scatter plots while the other three methods had a tendency 
of overfitting. Machine learning techniques such as SVM, 
RF and ERT can have an overfitting problem, which occurs 
when a model is very complex with many parameters and 
shows a poor predictive performance by overreacting to 
minor fluctuations in dataset. The red dots in Fig. 3 were the 
cases of 2012, in which an extreme drought occurred in the 
Midwestern US. The machine learning models for prediction 
of 2012 (that is, the models built using the data of the years 
except for 2012, for the Jackknife) were too trained for non-
drought years (except for 2012), so that they could not predict 
the corn yield under conditions of abrupt drought. However, 
the DL method can overcome the overfitting problem by a 
pre-training process based on unsupervised learning (Erhan 
et al., 2010). Fig. 3(j), 3(k) and 3(l) for the DL method shows 
that the red dots for 2012 are more closely located around the 
1:1 line.

4. Conclusions

This paper described the estimation of corn yields in 
Iowa State using four machine learning techniques such as 
SVM, RF, ERT and DL, and presented the comparisons of 
the validation statistics among them. We set up the three 
period groups (MJJAS, JA and OC) to examine the seasonal 
sensitivities of the corn yields. In overall, the DL method 
showed the highest accuracies in terms of the correlation 
coefficient for all the period groups. The accuracies were 
relatively favorable in the OC group, which indicates an 
optimal combination of month can be influential in statistical 
modeling of crop yields. The differences between our 
predictions and the USDA statistics were about 6-8 %, which 
shows the machine learning approaches can be a viable 
option for crop yield modeling. In particular, the DL showed 
more stable results by overcoming the overfitting problem 
of generic machine learning methods. To utilize temporal 
characteristics of crop yields, time-series machine learning 
techniques such as RNN (Recurrent Neurual Network) are 
challengeable as a future work. A sensitivity test to examine 
the contribution of climate change to the crop yields by 

including or excluding the climate variables can be another 
future work.
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