• Title/Summary/Keyword: machine learning (ML)

Search Result 302, Processing Time 0.023 seconds

Path Loss Prediction Using an Ensemble Learning Approach

  • Beom Kwon;Eonsu Noh
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.2
    • /
    • pp.1-12
    • /
    • 2024
  • Predicting path loss is one of the important factors for wireless network design, such as selecting the installation location of base stations in cellular networks. In the past, path loss values were measured through numerous field tests to determine the optimal installation location of the base station, which has the disadvantage of taking a lot of time to measure. To solve this problem, in this study, we propose a path loss prediction method based on machine learning (ML). In particular, an ensemble learning approach is applied to improve the path loss prediction performance. Bootstrap dataset was utilized to obtain models with different hyperparameter configurations, and the final model was built by ensembling these models. We evaluated and compared the performance of the proposed ensemble-based path loss prediction method with various ML-based methods using publicly available path loss datasets. The experimental results show that the proposed method outperforms the existing methods and can predict the path loss values accurately.

Development of ensemble machine learning models for evaluating seismic demands of steel moment frames

  • Nguyen, Hoang D.;Kim, JunHee;Shin, Myoungsu
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.49-63
    • /
    • 2022
  • This study aims to develop ensemble machine learning (ML) models for estimating the peak floor acceleration and maximum top drift of steel moment frames. For this purpose, random forest, adaptive boosting, gradient boosting regression tree (GBRT), and extreme gradient boosting (XGBoost) models were considered. A total of 621 steel moment frames were analyzed under 240 ground motions using OpenSees software to generate the dataset for ML models. From the results, the GBRT and XGBoost models exhibited the highest performance for predicting peak floor acceleration and maximum top drift, respectively. The significance of each input variable on the prediction was examined using the best-performing models and Shapley additive explanations approach (SHAP). It turned out that the peak ground acceleration had the most significant impact on the peak floor acceleration prediction. Meanwhile, the spectral accelerations at 1 and 2 s had the most considerable influence on the maximum top drift prediction. Finally, a graphical user interface module was created that places a pioneering step for the application of ML to estimate the seismic demands of building structures in practical design.

Optimizing shallow foundation design: A machine learning approach for bearing capacity estimation over cavities

  • Kumar Shubham;Subhadeep Metya;Abdhesh Kumar Sinha
    • Geomechanics and Engineering
    • /
    • v.37 no.6
    • /
    • pp.629-641
    • /
    • 2024
  • The presence of excavations or cavities beneath the foundations of a building can have a significant impact on their stability and cause extensive damage. Traditional methods for calculating the bearing capacity and subsidence of foundations over cavities can be complex and time-consuming, particularly when dealing with conditions that vary. In such situations, machine learning (ML) and deep learning (DL) techniques provide effective alternatives. This study concentrates on constructing a prediction model based on the performance of ML and DL algorithms that can be applied in real-world settings. The efficacy of eight algorithms, including Regression Analysis, k-Nearest Neighbor, Decision Tree, Random Forest, Multivariate Regression Spline, Artificial Neural Network, and Deep Neural Network, was evaluated. Using a Python-assisted automation technique integrated with the PLAXIS 2D platform, a dataset containing 272 cases with eight input parameters and one target variable was generated. In general, the DL model performed better than the ML models, and all models, except the regression models, attained outstanding results with an R2 greater than 0.90. These models can also be used as surrogate models in reliability analysis to evaluate failure risks and probabilities.

Runoff Prediction from Machine Learning Models Coupled with Empirical Mode Decomposition: A case Study of the Grand River Basin in Canada

  • Parisouj, Peiman;Jun, Changhyun;Nezhad, Somayeh Moghimi;Narimani, Roya
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.136-136
    • /
    • 2022
  • This study investigates the possibility of coupling empirical mode decomposition (EMD) for runoff prediction from machine learning (ML) models. Here, support vector regression (SVR) and convolutional neural network (CNN) were considered for ML algorithms. Precipitation (P), minimum temperature (Tmin), maximum temperature (Tmax) and their intrinsic mode functions (IMF) values were used for input variables at a monthly scale from Jan. 1973 to Dec. 2020 in the Grand river basin, Canada. The support vector machine-recursive feature elimination (SVM-RFE) technique was applied for finding the best combination of predictors among input variables. The results show that the proposed method outperformed the individual performance of SVR and CNN during the training and testing periods in the study area. According to the correlation coefficient (R), the EMD-SVR model outperformed the EMD-CNN model in both training and testing even though the CNN indicated a better performance than the SVR before using IMF values. The EMD-SVR model showed higher improvement in R value (38.7%) than that from the EMD-CNN model (7.1%). It should be noted that the coupled models of EMD-SVR and EMD-CNN represented much higher accuracy in runoff prediction with respect to the considered evaluation indicators, including root mean square error (RMSE) and R values.

  • PDF

Estimating GARCH models using kernel machine learning (커널기계 기법을 이용한 일반화 이분산자기회귀모형 추정)

  • Hwang, Chang-Ha;Shin, Sa-Im
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.3
    • /
    • pp.419-425
    • /
    • 2010
  • Kernel machine learning is gaining a lot of popularities in analyzing large or high dimensional nonlinear data. We use this technique to estimate a GARCH model for predicting the conditional volatility of stock market returns. GARCH models are usually estimated using maximum likelihood (ML) procedures, assuming that the data are normally distributed. In this paper, we show that GARCH models can be estimated using kernel machine learning and that kernel machine has a higher predicting ability than ML methods and support vector machine, when estimating volatility of financial time series data with fat tail.

A Box Office Type Classification and Prediction Model Based on Automated Machine Learning for Maximizing the Commercial Success of the Korean Film Industry (한국 영화의 산업의 흥행 극대화를 위한 AutoML 기반의 박스오피스 유형 분류 및 예측 모델)

  • Subeen Leem;Jihoon Moon;Seungmin Rho
    • Journal of Platform Technology
    • /
    • v.11 no.3
    • /
    • pp.45-55
    • /
    • 2023
  • This paper presents a model that supports decision-makers in the Korean film industry to maximize the success of online movies. To achieve this, we collected historical box office movies and clustered them into types to propose a model predicting each type's online box office performance. We considered various features to identify factors contributing to movie success and reduced feature dimensionality for computational efficiency. We systematically classified the movies into types and predicted each type's online box office performance while analyzing the contributing factors. We used automated machine learning (AutoML) techniques to automatically propose and select machine learning algorithms optimized for the problem, allowing for easy experimentation and selection of multiple algorithms. This approach is expected to provide a foundation for informed decision-making and contribute to better performance in the film industry.

  • PDF

Forecasting Fish Import Using Deep Learning: A Comprehensive Analysis of Two Different Fish Varieties in South Korea

  • Abhishek Chaudhary;Sunoh Choi
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.134-144
    • /
    • 2023
  • Nowadays, Deep Learning (DL) technology is being used in several government departments. South Korea imports a lot of seafood. If the demand for fishery products is not accurately predicted, then there will be a shortage of fishery products and the price of the fishery product may rise sharply. So, South Korea's Ministry of Ocean and Fisheries is attempting to accurately predict seafood imports using deep learning. This paper introduces the solution for the fish import prediction in South Korea using the Long Short-Term Memory (LSTM) method. It was found that there was a huge gap between the sum of consumption and export against the sum of production especially in the case of two species that are Hairtail and Pollock. An import prediction is suggested in this research to fill the gap with some advanced Deep Learning methods. This research focuses on import prediction using Machine Learning (ML) and Deep Learning methods to predict the import amount more precisely. For the prediction, two Deep Learning methods were chosen which are Artificial Neural Network (ANN) and Long Short-Term Memory (LSTM). Moreover, the Machine Learning method was also selected for the comparison between the DL and ML. Root Mean Square Error (RMSE) was selected for the error measurement which shows the difference between the predicted and actual values. The results obtained were compared with the average RMSE scores and in terms of percentage. It was found that the LSTM has the lowest RMSE score which showed the prediction with higher accuracy. Meanwhile, ML's RMSE score was higher which shows lower accuracy in prediction. Moreover, Google Trend Search data was used as a new feature to find its impact on prediction outcomes. It was found that it had a positive impact on results as the RMSE values were lowered, increasing the accuracy of the prediction.

KISTI-ML Platform: A Community-based Rapid AI Model Development Tool for Scientific Data (KISTI-ML 플랫폼: 과학기술 데이터를 위한 커뮤니티 기반 AI 모델 개발 도구)

  • Lee, Jeongcheol;Ahn, Sunil
    • Journal of Internet Computing and Services
    • /
    • v.20 no.6
    • /
    • pp.73-84
    • /
    • 2019
  • Machine learning as a service, the so-called MLaaS, has recently attracted much attention in almost all industries and research groups. The main reason for this is that you do not need network servers, storage, or even data scientists, except for the data itself, to build a productive service model. However, machine learning is often very difficult for most developers, especially in traditional science due to the lack of well-structured big data for scientific data. For experiment or application researchers, the results of an experiment are rarely shared with other researchers, so creating big data in specific research areas is also a big challenge. In this paper, we introduce the KISTI-ML platform, a community-based rapid AI model development for scientific data. It is a place where machine learning beginners use their own data to automatically generate code by providing a user-friendly online development environment. Users can share datasets and their Jupyter interactive notebooks among authorized community members, including know-how such as data preprocessing to extract features, hidden network design, and other engineering techniques.

Cognitive Impairment Prediction Model Using AutoML and Lifelog

  • Hyunchul Choi;Chiho Yoon;Sae Bom Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.53-63
    • /
    • 2023
  • This study developed a cognitive impairment predictive model as one of the screening tests for preventing dementia in the elderly by using Automated Machine Learning(AutoML). We used 'Wearable lifelog data for high-risk dementia patients' of National Information Society Agency, then conducted using PyCaret 3.0.0 in the Google Colaboratory environment. This study analysis steps are as follows; first, selecting five models demonstrating excellent classification performance for the model development and lifelog data analysis. Next, using ensemble learning to integrate these models and assess their performance. It was found that Voting Classifier, Gradient Boosting Classifier, Extreme Gradient Boosting, Light Gradient Boosting Machine, Extra Trees Classifier, and Random Forest Classifier model showed high predictive performance in that order. This study findings, furthermore, emphasized on the the crucial importance of 'Average respiration per minute during sleep' and 'Average heart rate per minute during sleep' as the most critical feature variables for accurate predictions. Finally, these study results suggest that consideration of the possibility of using machine learning and lifelog as a means to more effectively manage and prevent cognitive impairment in the elderly.

Optimizing Input Parameters of Paralichthys olivaceus Disease Classification based on SHAP Analysis (SHAP 분석 기반의 넙치 질병 분류 입력 파라미터 최적화)

  • Kyung-Won Cho;Ran Baik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1331-1336
    • /
    • 2023
  • In text-based fish disease classification using machine learning, there is a problem that the input parameters of the machine learning model are too many, but due to performance problems, the input parameters cannot be arbitrarily reduced. This paper proposes a method of optimizing input parameters specialized for Paralichthys olivaceus disease classification using SHAP analysis techniques to solve this problem,. The proposed method includes data preprocessing of disease information extracted from the halibut disease questionnaire by applying the SHAP analysis technique and evaluating a machine learning model using AutoML. Through this, the performance of the input parameters of AutoML is evaluated and the optimal input parameter combination is derived. In this study, the proposed method is expected to be able to maintain the existing performance while reducing the number of input parameters required, which will contribute to enhancing the efficiency and practicality of text-based Paralichthys olivaceus disease classification.