• Title/Summary/Keyword: mRNAs

Search Result 684, Processing Time 0.025 seconds

Downregulated microRNAs in the colorectal cancer: diagnostic and therapeutic perspectives

  • Hernandez, Rosa;Sanchez-Jimenez, Ester;Melguizo, Consolacion;Prados, Jose;Rama, Ana Rosa
    • BMB Reports
    • /
    • v.51 no.11
    • /
    • pp.563-571
    • /
    • 2018
  • Colorectal cancer (CRC), the third most common cancer in the world, has no specific biomarkers that facilitate its diagnosis and subsequent treatment. The miRNAs, small single-stranded RNAs that repress the mRNA translation and trigger the mRNA degradation, show aberrant levels in the CRC, by which these molecules have been related with the initiation, progression, and drug-resistance of this cancer type. Numerous studies show the microRNAs influence the cellular mechanisms related to the cell cycle, differentiation, apoptosis, and migration of the cancer cells through the post-transcriptionally regulated gene expression. Specific patterns of the upregulated and down-regulated miRNA have been associated with the CRC diagnosis, prognosis, and therapeutic response. Concretely, the downregulated miRNAs represent attractive candidates, not only for the CRC diagnosis, but for the targeted therapies via the tumor-suppressing microRNA replacement. This review shows a general overview of the potential uses of the miRNAs in the CRC diagnosis, prognosis, and treatment with a special focus on the downregulated ones.

MiRNA Molecular Profiles in Human Medical Conditions: Connecting Lung Cancer and Lung Development Phenomena

  • Aghanoori, Mohamad-Reza;Mirzaei, Behnaz;Tavallaei, Mahmood
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9557-9565
    • /
    • 2014
  • MiRNAs are endogenous, single stranded ~22-nucleotide non-coding RNAs (ncRNAs) which are transcribed by RNA polymerase II and mediate negative post-transcriptional gene regulation through binding to 3'untranslated regions (UTR), possibly open reading frames (ORFs) or 5'UTRs of target mRNAs. MiRNAs are involved in the normal physiology of eukaryotic cells, so dysregulation may be associated with diseases like cancer, and neurodegenerative, heart and other disorders. Among all cancers, lung cancer, with high incidence and mortality worldwide, is classified into two main groups: non-small cell lung cancer and small cell lung cancer. Recent promising studies suggest that gene expression profiles and miRNA signatures could be a useful step in a noninvasive, low-cost and repeatable screening process of lung cancer. Similarly, every stage of lung development during fetal life is associated with specific miRNAs. Since lung development and lung cancer phenomena share the same physiological, biological and molecular processes like cell proliferation, development and shared mRNA or expression regulation pathways, and according to data adopted from various studies, they may have partially shared miRNA signature. Thus, focusing on lung cancer in relation to lung development in miRNA studies might provide clues for lung cancer diagnosis and prognosis.

A novel model of THO/TREX loading onto target RNAs in metazoan gene expression

  • Hur, Junho K.;Chung, Yun Doo
    • BMB Reports
    • /
    • v.49 no.7
    • /
    • pp.355-356
    • /
    • 2016
  • The THO/TREX complex consists of several conserved subunits and is required for mRNA export. In metazoans, THO/TREX binds a subset of mRNAs during RNA splicing, and facilitates their nuclear export. How THO/TREX selects RNA targets is, however, incompletely understood. In our recent study, we reported that THO is loaded onto Piwi-interacting RNA (piRNA) precursor transcripts independent of splicing, and facilitates convergent transcription in Drosophila ovary. The precursors are later processed into mature piRNAs, small noncoding RNAs that silence transposable elements (TEs). We observed that piRNAs originating from dual-strand clusters, where precursors are transcribed from both strands, were specifically affected by THO mutation. Analysis of THO-bound RNAs showed enrichment of dual-strand cluster transcripts. Interestingly, THO loading onto piRNA precursors was dependent on Cutoff (Cuff), which comprises the Rhino-Deadlock-Cutoff (RDC) complex that is recruited to dual-strand clusters by recognizing H3K9me3 and licenses convergent transcription from he cluster. We also found that THO mutation affected transcription from dual-strand clusters. Therefore, we concluded that THO/TREX is recruited to dual-strand piRNA clusters, independent of splicing events, via multi-protein interactions with chromatin structure. Then, it facilitates transcription likely by suppressing premature termination to ensure adequate expression of piRNA precursors.

Long non-coding RNA: its evolutionary relics and biological implications in mammals: a review

  • Dhanoa, Jasdeep Kaur;Sethi, Ram Saran;Verma, Ramneek;Arora, Jaspreet Singh;Mukhopadhyay, Chandra Sekhar
    • Journal of Animal Science and Technology
    • /
    • v.60 no.10
    • /
    • pp.25.1-25.10
    • /
    • 2018
  • The central dogma of gene expression propounds that DNA is transcribed to mRNA and finally gets translated into protein. Only 2-3% of the genomic DNA is transcribed to protein-coding mRNA. Interestingly, only a further minuscule part of genomic DNA encodes for long non-coding RNAs (lncRNAs) which are characteristically more than 200 nucleotides long and can be transcribed from both protein-coding (e.g. H19 and TUG1) as well as non-coding DNA by RNA polymerase II. The lncRNAs do not have open reading frames (with some exceptions), 3`-untranslated regions (3'-UTRs) and necessarily these RNAs lack any translation-termination regions, however, these can be spliced, capped and polyadenylated as mRNA molecules. The flexibility of lncRNAs confers them specific 3D-conformations that eventually enable the lncRNAs to interact with proteins, DNA or other RNA molecules via base pairing or by forming networks. The lncRNAs play a major role in gene regulation, cell differentiation, cancer cell invasion and metastasis and chromatin remodeling. Deregulation of lncRNA is also responsible for numerous diseases in mammals. Various studies have revealed their significance as biomarkers for prognosis and diagnosis of cancer. The aim of this review is to overview the salient features, evolution, biogenesis and biological importance of these molecules in the mammalian system.

Effect of Glycyrrhizae Radix on the Expression of UDP-Glucuronosyltransferase-1A1 (UGT1A1) in Rat Liver

  • Moon, A-Ree;Lee, Song-Deuk
    • Biomolecules & Therapeutics
    • /
    • v.4 no.3
    • /
    • pp.280-284
    • /
    • 1996
  • Licorice has been widely used in combination with other herbs or synthetic drugs for various disorders. In an effort to study the effect of licorice roots (Glycyrrhizae Radix, GR) and glycyrrhizin on the hepatic glucuronidation, we have previously found that the pretreatment of GR or glycyrrhizin for 6 days resulted in a marked increase in the enzymatic activity of 3-methylcholanthrene (3-MC)-inducible hepatic UDP-glucuronosyltransferase (UGT) isozyme that has high affinity toward phenolic substrates (p-nitrophenol form, UGTIA) in Sprague-Dawley rats. As an approach to elucidate the mechanism for the enzyme activation by licorice in rat liver, we examined the levels of hepatocellular mRNAs for UGTIA upon the treatment of GR or glycyrrhizin. The hepatic mRNAs were extracted from Sprague-Dawley rats and Wistar rats after the treatment of the methanol extract of GR (1 g/kg, p.o.), glycyrrhizin (23 mg/kg, p.o.) for 6 days, or 3-MC (40 mg/kg, i.p.) for 3 days. Using the UGT1A1 CDNA as a probe, we found that the mRNAs for the enzyme were induced by 3-MC treatment while those were influenced neither by GR nor by glycyrrhizin in both strains of rats. These results indicate that the activation of rat liver UGTI A by licorice and glycyrrhizin was not due to the induction of mRNAs for the enzyme.

  • PDF

Cosuppression and RNAi induced by Arabidopsis ortholog gene sequences in tobacco

  • Oka, Shin-Ichiro;Midorikawa, Kaoru;Kodama, Hiroaki
    • Plant Biotechnology Reports
    • /
    • v.4 no.3
    • /
    • pp.185-192
    • /
    • 2010
  • The Arabidopsis ${\omega}$-3 fatty acid desaturase (AtFAD7) catalyzes the synthesis of trienoic fatty acids (TA). A transgenic tobacco line, T15, was produced by a sense AtFAD7 construct and showed a cosuppression-like phenotype, namely extremely low TA levels. The sequence similarity between AtFAD7 and a tobacco ortholog gene, NtFAD7, was moderate (about 69%) in the coding sequences. AtFAD7 siRNAs accumulated at a high level, and both AtFAD7 and NtFAD7 mRNAs are degraded in T15 plants. The low-TA phenotype in T15 was dependent on a tobacco RNA-dependent RNA polymerase6 (NtRDR6). We also produced tobacco RNAi plants targeting AtFAD7 gene sequences. The AtFAD7 siRNA level was trace, which was associated with a slight reduction in leaf TA level. Unexpectedly, this RNAi plant showed an increased NtFAD7 transcript level. To investigate the effect of translational inhibition on stability of the NtFAD7 mRNAs, leaves of the wild-type tobacco plants were treated with a translational inhibitor, cycloheximide. The level of NtFAD7 mRNAs significantly increased after cycloheximde treatment. These results suggest that the translational inhibition by low levels of AtFAD7 siRNAs or by cycloheximide increased stability of NtFAD7 mRNA. The degree of silencing by an RNAi construct targeting the AtFAD7 gene was increased by co-existence of the AtFAD7 transgene, where NtRDR6-dependent amplification of siRNAs occurred. These results indicate that NtRDR6 can emphasize silencing effects in both cosuppression and RNAi.

Exploring Cancer-Specific microRNA-mRNA Interactions by Evolutionary Layered Hypernetwork Models (진화연산 기반 계층적 하이퍼네트워크 모델에 의한 암 특이적 microRNA-mRNA 상호작용 탐색)

  • Kim, Soo-Jin;Ha, Jung-Woo;Zhang, Byoung-Tak
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.10
    • /
    • pp.980-984
    • /
    • 2010
  • Exploring microRNA (miRNA) and mRNA regulatory interactions may give new insights into diverse biological phenomena. Recently, miRNAs have been discovered as important regulators that play a major role in various cellular processes. Therefore, it is essential to identify functional interactions between miRNAs and mRNAs for understanding the context- dependent activities of miRNAs in complex biological systems. While elucidating complex miRNA-mRNA interactions has been studied with experimental and computational approaches, it is still difficult to infer miRNA-mRNA regulatory modules. Here we present a novel method, termed layered hypernetworks (LHNs), for identifying functional miRNA-mRNA interactions from heterogeneous expression data. In experiments, we apply the LHN model to miRNA and mRNA expression profiles on multiple cancers. The proposed method identifies cancer-specific miRNA-mRNA interactions. We show the biological significance of the discovered miRNA- mRNA interactions.

The role of microRNAs in synaptic development and function

  • Corbin, Rachel;Olsson-Carter, Katherine;Slack, Frank
    • BMB Reports
    • /
    • v.42 no.3
    • /
    • pp.131-135
    • /
    • 2009
  • MicroRNAs control gene expression by inhibiting translation or promoting degradation of their target mRNAs. Since the discovery of the first microRNAs, lin-4 and let-7, in C. elegans, hundreds of microRNAs have been identified as key regulators of cell fate determination, lifespan, and cancer in species ranging from plants to humans. However, while microRNAs have been shown to be particularly abundant in the brain, their role in the development and activity of the nervous system is still largely unknown. In this review, we describe recent advances in our understanding of microRNA function at synapses, the specialized structures required for communication between neurons and their targets. We also propose how these advances might inform the molecular model of memory.

Molecular cloning, tissue distribution and quantitative analysis of two proopiomelanocortin mRNAs in Japanese flounder (Paralichthys olivaceus)

  • Kim, Kyoung-Sun;Kim, Hyun-Woo;Chen, Thomas T.;Kim, Young-Tae
    • BMB Reports
    • /
    • v.42 no.4
    • /
    • pp.206-211
    • /
    • 2009
  • Proopiomelanocortin (POMC) plays an essential role in the stress response of the hypothalamic-pituitary-adrenal axis, and is the precursor of biologically active peptides such as adrenocorticotropin (ACTH), $\alpha$-melanocyte-stimulating hormone ($\alpha$-MSH), $\beta$-melanocyte-stimulation hormone ($\beta$-MSH) and $\beta$-endorphin. We have synthesized two different forms of POMC cDNA clones, POMC-I and POMC-II, from a pituitary cDNA library for Paralichthys olivaceus, or Japanese flounder. jfPOMC-I cDNA consists of 954bp and encodes a polypeptide of 216 amino acid residues, whereas jfPOMC-II consists of 971bp which encode a polypeptide of 194 amino acid residues. The high levels of jfPOMC-I and -II mRNAs detected in the pituitary tissue and moderate levels detected in the brain tissue plus our quantitative RT-PCR analysis, which showed there to be no significant difference between the levels of jfPOMC-I and -II mRNAs, indicate that there may be no functional separation between these two mRNAs in the flounder.

NMR hydrogen exchange study of miR156:miR156* duplexes

  • Kim, Na-Hyun;Choi, Seo-Ree;Jin, Ho-Seong;Seo, Yeo-Jin;Lee, Joon-Hwa
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.3
    • /
    • pp.61-66
    • /
    • 2019
  • RNAs exhibit distinct structural and dynamic features required for proper function. The hydrogen-bonded imino protons of RNAs are a probe of the conformational transition and dynamic feature. MicroRNAs originate from primary transcripts containing hairpin structures. The levels of mature miR156 influence the flowering time of plants. To understand the molecular mechanism of biological function of $miR156:miR156^*$ duplex, we performed hydrogen exchange study on the model RNAs mimicking two phenotypes of $miR156:miR156^*$, $miR156:miR156^*$ (m-miR156a) and $miR156:miR156^*$ (m-miR156g) duplexes. This study found that the internal bulge of m-miR156a destabilized the neighboring base-pairs, whereas the bulge structure of m-miR156g did not affect the thermal stabilities of the neighboring base-pairs.