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Abstract

The central dogma of gene expression propounds that DNA is transcribed to mRNA and finally gets translated into
protein. Only 2–3% of the genomic DNA is transcribed to protein-coding mRNA. Interestingly, only a further
minuscule part of genomic DNA encodes for long non-coding RNAs (lncRNAs) which are characteristically more
than 200 nucleotides long and can be transcribed from both protein-coding (e.g. H19 and TUG1) as well as non-
coding DNA by RNA polymerase II. The lncRNAs do not have open reading frames (with some exceptions), 3`-
untranslated regions (3’-UTRs) and necessarily these RNAs lack any translation-termination regions, however, these
can be spliced, capped and polyadenylated as mRNA molecules. The flexibility of lncRNAs confers them specific 3D-
conformations that eventually enable the lncRNAs to interact with proteins, DNA or other RNA molecules via base
pairing or by forming networks. The lncRNAs play a major role in gene regulation, cell differentiation, cancer cell
invasion and metastasis and chromatin remodeling. Deregulation of lncRNA is also responsible for numerous
diseases in mammals. Various studies have revealed their significance as biomarkers for prognosis and diagnosis of
cancer. The aim of this review is to overview the salient features, evolution, biogenesis and biological importance of
these molecules in the mammalian system.
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Background
The organization of eukaryotic genome is very complex.
Almost 98% of the human genome does not encode pro-
teins [109]. This non-coding DNA was assumed to be a
“barren land” with no apparent functionality in protein
synthesis and thus erstwhile it was termed as “junk
DNA” [50, 73, 75]. However, the non-coding, intergenic
DNA was later found to be a treasure of information
that can be deciphered in the form of nucleotide ele-
ments (repetitive, transposable, interspersed elements
etc) and different non-coding RNAs (rRNAs, tRNAs,
regulatory RNAs etc). The RNA molecules lacking
protein-codingcapacity are known as non-coding RNAs
(ncRNAs). How much non-coding sequences are func-
tional is still a matter of debate. The reports published
by Encyclopedia of DNA elements (ENCODE) revealed

that approximately 80.4% of the genome is involved in
some sort of biochemical activity including chromatin
structure, histone modification and RNA transcription etc.
[71]. The non-coding transcripts less than 200 bases are
called small non-coding RNA and comprise of tRNA,
rRNA, miRNA, snoRNA, piwi-interacting RNA (pi-RNA)
etc. [47]. The proportion of different ncRNAs to the total
amount of RNA in a healthy eukaryotic cell, other than
rRNA (80–90%) and tRNA (10–15%), ranges between
0.002 to 0.2% [15]. On the contrary, RNA molecules that
are of more than 200 bases in length are known as long
non-coding RNA (lncRNA) [82].
The lncRNAs and other non-coding RNAs including

miRNAs (21–24 bases) and piRNAs (26–31 bases) are
involved in epigenetic modification of DNA, and regula-
tion of transcriptional and post-transcriptional gene ex-
pression [25, 69]. In the course of time, different
non-coding RNAs (antisense RNAs, snoRNAs, miRNAs,
piRNAsetc) have been discovered in animals and plants.
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Of late, considerable research emphasis has been given
towards lncRNAs and their diverse role in various diseases
in animals, especially human and mice. H19, an imprinted
long non-coding RNA gene that encodes an untranslated
RNA, is transcribed only from maternally inherited alleles.
This feature is responsible for its role as a negative regula-
tion of body weight and cell proliferation. The maternal
disruption of this gene in mice showed somatic over-
growth of heterozygotes whereas no effect was noticed
during disrupted paternal inheritance [57]. The study
showed that transgenic mice lacking functional H19 ex-
hibit normal development, however, other experiments in
mice revealed that overexpression of H19 affects their pre-
natal viability [43, 49]. The lncRNAs exercise a very wide
variety of functions in animals, which have been discussed
later in this review. Certain lncRNAs are reported to be
associated with counteracting toxic conditions in the hu-
man body. The lncRNAs associated with toxicological re-
sponses to various xenobiotics (Benzene, Phenobarbital,
Cadmium etc.), in human, has also been reported [14].
The lncRNAs exhibit their biological functions by act-

ing as cis- or trans- regulators in biological processes
[63, 79, 95]. The lncRNAs that control chromatin struc-
ture interact with nucleosome remodeling factors as well
as chromatin modifying enzymes [33]. Such long non-
coding RNAs usually have limited coding potential due to
the absence of open reading frames, 3`-UTR and termin-
ation region. In this review, we are going to outline the lit-
erature findings of the basic features, functions and
differential role of lncRNAs in the biological system.

Features of lncRNA
Length
As discussed above, the non-coding transcripts that do
not encode proteins and are more than 200 nucleotides
in length are known as long non-coding RNAs
(lncRNAs). The length of a lncRNA can be more than 2
Kb while their coding potential is less than 100 amino
acids [5]. Kaur and colleagues showed that in the human
genome 20% of the transcriptional progress would be as-
sociated with protein-coding genes. This information il-
lustrates that lncRNAs are four times longer than the
coding RNA sequence [5].

Location in genome
The lncRNAs are harbored mostly in poorly conserved
regions in the genome including the intronic regions of
genes [51]. Besides, some lncRNAs are reported to be
transcribed from one of the strands of a DNA sequence
[61] within the protein-coding locus. The genomic loca-
tions of the lncRNAs bear direct association with their
evolutionary conservedness [52, 53]. Research findings
and scientific discussions suggest that plethora of
lncRNAs are evolutionarily conserved [54] howbeit to

lesser extent as compared to that of the protein-coding
genes [55]. Interestingly, the promoter-regions of the
lncRNAs are more conserved as compared to the se-
quence of the lncRNAs [56]. The presence of open read-
ing frames in some lncRNAs makes these molecules
difficult to distinguish from protein-coding RNAs [17].
The lncRNA gene ‘X Inactive Specific Transcript’ (or
Xist), responsible for X-chromosome inactivation, is an
example of lncRNA located within a less conserved re-
gion in the genome [81].

Action
Different families of lncRNAs exercise varying modes of
action for gene expression regulation and protein syn-
thesis. These non-coding RNAs (ncRNAs) can act as
scaffolds in sub-nuclear domains or can possess second-
ary structures to interact with DNA, RNA, and protein
(http://www.exiqon.com/lncRNA). Long non-coding
RNAs havecell-specific expression.It has been reported
that transcription of individual lncRNAs occurs at a spe-
cifictime; hence they can serve as molecularsignals to re-
spond to diverse stimuli [103].

Cis- and trans-regulating action
The specific category of RNAs that exhibit sequence-com
plementarity to other RNA transcripts is known as natural
antisense transcripts (NATs). The trans-NATs and their
respective targets are physically located in different loci on
the genome, like miRNAs. While the cis-NATs and their
targets are located on the same locus, but opposite strands
of the DNA. These cis-NATs were firstly identified in vi-
ruses, then prokaryotes and finally in eukaryotes. In eu-
karyotes (except nematodes), approximately 5–29% of the
transcriptional units are involved in the overlap [51]. The
cis-NATs are transcribed by RNApolymerase II which
shows its involvement in mRNA processing. The inter-
action of sense and antisense transcripts suggests the role
of NATs in gene expression regulation. Besides that, it has
also been reported that in case of RNA hybrid formation
and transcription of gene locus in both orientations can
also induce gene silencing or can trigger an immune
response [108].

Comparison with miRNA
miRNAs and lncRNAs, both are non-coding in nature.
miRNAs are ~ 22 nucleotides long as compared to 8–10
times longer lncRNAs. The exact functions of lncRNAs
are not clear yet but it has been reported that both
miRNA and lncRNAs act as regulators for controlling
biological processes at post-transcriptional repression of
protein-coding genes [101, 102, 105]. Besides,lncRNAs
can also act as miRNA sponges and can reduce their
regulatory effect on mRNA [78]. Experimental detection
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of the human genome has identified approximately 2000
different miRNAs and around 50,000 lncRNAs [15, 21, 34].

Classification of lncRNAs
The nomenclature and symbols of 319 human-lncRNA-
shave been approved by the HUGO-Gene Nomenclature
Committee (HGNC) (https://www.genenames.org/cgi-bin/
genefamilies/set/788). The lncRNAs are classified on the
basis of structure, function, localization, metabolism, and
interaction with protein-coding genes or other DNA ele-
ments [4]. Secondary and tertiary structures of lncRNA
are greatly conserved as compared to its primary struc-
ture. The structure-function relationship study of these
high molecular weight molecules is challenging because
they are difficult to crystallize [58, 59]. Broadly, the
lncRNAs can be divided into 5 categories (Fig. 1):

� sense lncRNAs
� antisense lncRNAs
� bidirectional lncRNAs
� intronic lncRNAs and
� intergenic lncRNAs

The aforementioned diversified function classifications
can be clustered according to the 3 different modes
of regulation. Firstly, as a competitor, it can bind to
DNA binding proteins and can inhibit their attach-
ment to the target (viz. transcription factors). For ex-
ample, lncRNA can affect DNA methylation by
inhibiting binding of DNMT1 to target DNA that ul-
timately affects transcriptional activation of the target
gene [38]. Secondly, as a recruiter, lncRNA can
reinforce DNA methylation by recruiting epigenetic

modifiers to some target sites [113]. Lastly, lncRNA
can act as a precursor of miRNA through digestion
with some RNases such as Dicer [45].

Biogenesis of the lncRNAs
The lncRNA can be transcribed from intergenic, exonic
or the distal protein-coding regions of the genome by
the enzyme RNA-polymerase II (Fig. 1). Then the
pre-mature lncRNA gets 3`-polyadenylated and capped
on the 5′-end with methyl-guanosine [60]. Often it
undergoes alternative splicingwhich is essential to gener-
ate protein diversity [26]. The mechanism of alternative
splicing can be classified in three ways. Firstly, lncRNAs
interact with specific splicing factors and then form
RNA-RNA duplexes with pre-mRNA molecules and fi-
nally, they affect the chromatin remodeling, thus
complete the splicing of target genes [87]. For example,
LINC-HELLP, a 205 kb-lncRNA, which is suggested to be
involved in pregnancy-associated disease HELLP and spli-
cing regulation. The purification and mass spectrometry
experiments revealed that splicing components (including
the splicing-related factors Y-Box Binding Protein 1
(YBX1), and Poly(RC) Binding Proteins 1 and 2) and the
ribosomal machinery recognizesthis lncRNA. The mo-
lecular mechanisms of splicing regulation by this
lncRNAare not clear yet, but it was demonstrated that due
to mutations in HELLP patients, some portion (5′-end up
to the middle) of the LINC-HELLP transcript loses its
ability to interact with its protein partners. On the other
hand, binding increases with mutations at the far 3′-end
[87]. There are some exceptions of functional lncRNAs
which are not polyadenylated viz. antisense,‘as-Oct4-pg5’
and brain associated‘BC200’ [11, 35]. In general,

Fig. 1 Biogenesis and classification (on the basis of localization) of lncRNAs in humans and other animals
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lncRNA-encoding genes consist of own promoters and
have their transcription factors (TFs) and unique DNA
motifs [14].
Epigenetic modification plays role in lncRNA biogenesis.

Histone-methylation plays a major role in transcriptional
regulation. Histone H3 lysine 4 (H3K4) methylation is the
symbol of transcription activation whereas H3K27 tri-
methylation indicates gene silencing. Various lncRNAs
including HOTTIP, XIST, FIRRE etc. are involved in tran-
scriptional gene activation and organization of 3D nuclear
architecture [14]. On the other hand, the decoys of
lncRNAs such as Alu transcripts or lncRNA-DNA triplex
can inhibit the transcriptional regulation through binding
to RNA polII [64]. Binding of different transcription factors
(TFs) to lncRNA forms a nascent transcript which ultim-
ately regulates mRNA processing through alternative spli-
cing. This binding of lncRNAs to mRNA can increase or
inhibit translation or can promote mRNA decay [6]. Experi-
mental data from small RNA deep sequencing (sRNA-Seq)
has suggested that lncRNA can encode small functional
RNA too [41]. Mature lncRNAs can be present in the nu-
cleus and/or cytoplasm [80]. Despite the fact that the cyto-
plasmic lncRNAs are not translated, but small peptides
have been identified that were generated from lncRNAs
through their association with ribosomes [30]. Some find-
ings indicate that transcriptionally active pseudogenes can
also produce these molecules or they can also be tran-
scribed from the promoter or intergenic regions [25].

Divergent functions of lncRNAs
Most of the lncRNAs, although non-coding in nature,
have a diverse role in disease and biological developmen-
tal processes. The exact function of lncRNA and its
mode of action warrants in-depth study. However, in
general, lncRNAs are found to play important role in
gene expression regulation of various diseases including
cancer. The lncRNA can implement its function in four
different ways [3]:

Signals
The production and presence of signal factors of
lncRNAs are an indicator of their transcriptional activity
(e.g. KCNQ1ot1 and Xist) [19]. Some lncRNA tran-
scripts such as CCND1 activate or deactivate the natural
functions of target protein targets (that are allosterically
modified) via intrinsic catalytic activities [106].

Decoys
Molecular decoys (viz. Gas5, PANDA etc) are polynucleo-
tides that negatively regulate an effector by preventing ac-
cess of regulatory proteins to DNA. Gas5 is a
hairpin-structured lncRNA (resembles glucocorticoid re-
ceptors of DNA) that act as a decoy during growth factor
starvation. It releases the receptors of DNA during

starvation condition and prevents the transcription of
metabolic genes [85].

Guides
The lncRNAs are required for proper localization of spe-
cific proteins including ribonucleoprotein complexes.
Homeobox antisense intergenic RNA (HOTAIR) is an
example of guide lncRNA to localize polycomb repressor
complex2 (PRC2) in developmental and cancer-related
gene expression. It is associated with tumor invasiveness
and metastasis in gastrointestinal, liver, breast and pan-
creatic cancers [27].

Scaffolds
The lncRNAs can serve as adaptors to bind more than 2
protein partners, thus are involved in structural roles. The
telomerase RNA TERC (TERRA), an example of RNA
scaffold, is responsible for telomerase function [99].
Apart from the aforementioned functions, lncRNAs

have been reported to be functional in some substruc-
tures of mouse brain [66], and have some role associated
with transcriptional factors involved in conferring pluri-
potency to cells [16]. Long intergenic non-coding RNAs
(lincRNAs) are lncRNAspresent in the intergenic regions
and have an important role in the maintenance of a
pluripotent state of cells. Study on mice embryonic stem
cells revealed that knockdown of lincRNA gene effects
on gene regulation [85].

Evolutionary perspective
RNA has evolved earlier than DNA as a genetic material.
The former has served as a temporary storage of genetic
information [20], while the latter confers structural sta-
bility to RNA as a double-strandedmolecule and is able
to store genetic information [20, 74]. However, RNA
retained the diverse array of functionality in deciphering
the genetic scripts and encoding proteins.
Iyer and colleagues estimated that more than 10,000

lncRNA coding genes are present in the human genome
and about 60,000 lncRNAs are transcribed in all types of
cells [40]. Whole genome alignment of human and
mouse lncRNAs showed that the exonic region of
lncRNAs evolved at a slower rate as compared to those
from the intergenic region and introns of protein coding
sequence. This indicates that some lncRNAs may be
non-functional or their function can overcome precise
sequence constraints [36]. The degree of nucleotide con-
servation of lncRNAs can be examined on inter-specific
or intra-specific levels[31].
Bioinformatics support is now available to study evolu-

tionary perspectives of lncRNAs. The software named
“slncky” has recently been designed for the evolutionary
analysis of lncRNA in mammals. It uses RNA sequen-
cing data, removes the overlapping transcripts of
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annotated and unannotated protein-coding genes
present in same species and aligns identified transcripts.
The remaining set of fragments are characteristically
conservedandlong non-coding transcripts, hence these
areidentified as lncRNAs [10].

Biological role of lncRNAs: Association with
diseases
The lncRNAs play a versatile role, as discussed above, in
various biological processes and disease states by interact-
ing with DNA, RNA and other transcriptional molecules.
They have a role in histone modification, chromatin re-
modeling, gene expression regulation, gene silencing, DNA
methylation, heat shock response and embryogenesis [3].
The mutation in lncRNA is associated with various diseases
including virus infection, cancer, and neurodegenerative
disorders. Any dysregulation in lncRNAs influences the
normal cellular functions including cell proliferation, resist-
ance to apoptosis, induction of angiogenesis and evasion of
tumor suppressors [28] (Fig. 2). Knockdown of some
lncRNAsis responsible for the change in gene expression
due to loss of pluripotency[86] of embryonic cells. Till date,
very sparse research has been conducted on lncRNAs. Di-
vergent lncRNAs has been adumbrated in Table 1 with
their roles in normal physiological and pathological condi-
tions in different mammals.

The role of lncRNA in epigenetics
In the early 1990s it was discovered that lncRNAs are in-
volved in epigenetic gene regulation (viz. H19 and Xist)
[111]. In this section the lncRNA genes viz. Xist and
H19 that are associated with epigenetic regulation of
pathophysiological conditions are discussed.

Xist
One of the X-chromosomes in female mammals gets ran-
domly inactivated (heterochromatinizedfacultative) during
early embryonic stages to ensure dosage compensation in
females with regard to the hemizygotic males harboring a
single copy of those X-linked genes. X-inactive specific
transcript (Xist), a 17 Kb gene located on mammalian
X-chromosome, is an example of lncRNA which is re-
sponsible for X-chromosome inactivation in eutherian
mammals. The regulation of cis-X inactivation is initiated
by coating the X-chromosome and engaging polycomb re-
pressive 2 (PRC2) complex to specific sites. This results in
histone H3 lysine K27 trimethylation (H3K27me3) and
X-linked inactivation [111].

H19
This lncRNA gene is located at Beckwith-Wiedemann Syn-
drome (BWS) locus in humans [68]. The lncRNA H19, not
only regulates maternal imprinting during embryogenesis
but also binds to methyl-CpG-binding-domain protein 1
(MBD1) and recruits histone-lysine-methyltransferase-con-
taining complexes to place repressive H3K9 methylation
marks on target imprinted loci [88]. HuR, an RNA binding
protein, negatively regulates the expression of miR-675 by
binding with H19 and is responsible for decreased cell pro-
liferation and limited placental growth before birth [45].

Genomic imprinting
Genomic imprinting is an epigenetic process by which a
specific gene is expressed in a monoallelic manner depend-
ing on the parent of origin [100]. The lncRNAs were also
found to be involved in some imprinting processes. In the
process of uniparental gene expression, the lncRNA re-
cruits DNA methyltransferases instead of PRC2 for histone
modification and DNA methylation [67]. The orthologs of
some human lncRNAs (Airn, H19, Kcnq1ot1, Meg3, and
Meg8) have been identified in 24 different species that are
responsible for controlling genomic imprinting [44]. The
lncRNAsAirn and Kcnq1 opposite transcript 1 (Kcnq1ot1)/
long QT intronic transcript 1(L1 T1) are responsible for
suppression of paternally inherited genes [103]. The clus-
ters of imprinted genes are found to be conserved contain-
ing at least one lncRNA gene. These lncRNAs form a
cluster with DNA duplex to produce a triplex structure
[99]. Insulin-like growth factor-2 (Igf2) and insulin-like
growth factor-2 receptor (Igf2r) are examples of maternally
and paternally imprinted genes, respectively, for embryonic
growth control [44]. Mental disorder or incidence of cancer
has been associated with dysregulated imprinting of such
genes [42].

Cancer
The study of lncRNAs till date inferences that whether
these molecules are associated and involved in various

Fig. 2 Various Functions of lncRNAs in biological processes
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biological processes but their dysregulation can develop
cancer. Metastasis-associated lung adenocarcinoma tran-
script 1 (Malat1) is a lncRNA that is involved in localization
of splicing factors serine/arginine to the nuclear speckles.
These lncRNAs control the alternative splicing of various
mRNA precursors and play important role in the pathogen-
esis resulting from metastasis and cell invasion [41]. It can
affect regulation of cytoskeletal and extracellular matrix
genes at transcriptional and post-transcriptional levels [98].
Some transcripts of lncRNA including Xist and Kcnq1ot1
are also involved in dosage compensation [24]. In another
report, it has been mentioned that the apoptosis of breast
cancer cells can be inhibited by plasmacytoma variant
translocation 1 gene (PVT1) [101, 102, 105].

HOTAIR lncRNA can promote cancer metastasis in
the chromatin state of cancer cells through epigenetic
variations [39]. The up-regulation of HOTAIR could be
associated with poor or failed prognosis, in various types
of cancers including breast, liver, gastrointestinal and
pancreatic cancers [27, 107]. Steroid receptor RNA acti-
vator (SRA) is a lncRNA that is linked to breast cancer
with highly conserved helices and loops [72]. PCAT-1 is
another lncRNA involved in the stimulation of cell pro-
liferation [83]. Prostate cancer has been associated with
over-expression of long intergenic non-protein coding
RNA gene SCHLAP1 (SWI/SNF Complex Antagonist
Associated with Prostate Cancer 1) [89]. Up-regulation
of TUG1 promotes proliferation and migration of

Table 1 List of some Long non-coding RNAs and their role in different tissues

SN Type or Family Target Tissue Role Reference

1 Heat shock RNA1 (HSR1) Various tissues • stimulates trimerization of heat-shock factor
1 (HSF1)with eukaryotic translation elongation
factor 1A

[91]

2 Meiotic recombination hot
spot1 locus (Mrhl)

Located in nucleus • Regulate spermatogenesis [23]

3 HongrES2 Expressed specifically
in the cauda-epididymis

• The transcript mil-HongrES2 inhibits
expression of an epididymis-specific protein CES7
and its cholesterol esterase activity;
• its overexpression results in retarded sperm
capacitation

[70]

4 Testis-specific X-linked (Tsx) Expressed in pachytene
spermatocytes

• regulatory role in germline meiotic division [1]

5 Dmrt1-related gene (Dmr) Testis-specific • essential transcription factor that
promotesspermatogonial development by
up-regulating

Sohlh1 (Spermatogenesis and Oogenesis Specific
Basic Helix-Loop-Helix 1);
• prevents premature meiosis in spermatogonia
by repressing Stra8 (Gene stimulated by retinoic acid 8)

[76]

6 Homeobox antisense
intergenic RNA (HOTAIR)

Gastric adenocarcinoma
tissues, Lung, Breast, Kidney

• Promotes cancer cell migration, invasion, and
metastasis

• Increased expression may affect genomic
relocalization of the polycomb repressive complex 2;

• Can enhance trimethylation of H3K27;
• biomarker for poor prognosis in colorectal cancer

[32, 48]

7 Metastasis-associated lung
adenocarcinoma transcript 1 (MALAT1)

Lung, pancreas • Promotes cancer cell migration, invasion, and metastasis
• Knockdown of MALAT1 (in HCC cell line)
demonstrated amarked reduction in tumor progression.
So it can be used as negative prognostic biomarker

[29]

8 Maternally Expressed Gene (MEG3) Glioma cells, bladder,
gastric tissues

• Tumor suppressive
• Due to down-regulated expression in various tumor
conditions including meningioma and glioma, it acts
as tumor suppressor

[104]

9 Taurineupregulated gene 1 (TUG1) Osteosarcoma tissue • Tumor suppressive
• Inhibit apoptosis

[115]

10 GAS5 Lung, breast, colorectal,
kidney, prostate

• Induces apoptosis and suppresses miR-21 expression [92]

11 BRAF Activated Noncoding
RNA (BANCR)

Lung • Tumor suppressive [96]

12 H19 Lung • Tumor suppressor gene
• Higher H19 expression due to demethylation of promoter
region results in induction of lung cancer

[12, 77]
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esophageal squamous cell carcinoma while its down-
regulation inhibits osteosarcoma cell proliferation and
promotes apoptosis [94].

Autoimmune disease
An abnormal immune response to the normal body due
to complex environmental profile results in the develop-
ment of autoimmune disease(s). Research reports show
that lncRNAs contribute to the development of certain
autoimmune diseases in human and mice, in a similar
manner of some of the miRNAs that are found to be es-
sential for normal immune response and to prevent
autoimmune diseases [93]. Autoimmune diseases caused
by a minute change in gene regulation or cells related to
immune response (B cells, T cells etc) [110] can be de-
tected from the regulation process of lncRNAs. The up
or down-regulation of some lncRNAs has also been de-
tected to be associated with various autoimmune dis-
eases. For example, the up-regulation of GAS5 is
associated with sclerosis and tuberculosis whereas
down-regulation was detected in rheumatoid arthritis
[65]. Under homeostatic conditions, lnc13 is known to
repress the expression of inflammation-related genes [7].

Differentiation and regulation of spermatogonial stem
cells (SSC)
Another role of lncRNA has been detected in sexual
identities via regulating the expression of sex determin-
ation genes from fly to mice [90]. The role of lncRNAs
in differentiation and regulation of SSC self-renewal has
been reported in glial cell-derived neurotrophic factor
(GDNF) [58, 59]. Some lncRNAs are also involved in
regulation of male reproduction. In vitro study in mouse
showed that AK015322 lncRNA promotes proliferation
of spermatogonial stem cell line C18–4 [37].

Role in spermatogenesis
The whole genome expression profile of spermatogenesis-
related lncRNAs has revealed that testis is one of the
highly abundant lncRNA containing tissue. The expres-
sion of testis-specific lncRNAs, lncRNA-Tcam1 and
lncRNA-HSVIII has been identified in spermatocyte stages
[114]. TUG1 is a long, intergenic gene that is up-regulated
in various human cell lines and tumors.

Other physiological functions
Meiotic recombination hot spot locus (Mrhl) is a 2.4-kb
mono-exonic lncRNA sited in the nucleus of mouse
chromosome 8 which play a major role in the regulation
of spermatogenesis. Despite that HongrES2 (in rat),
Testis-specific X-linked (Tsx) (expressed in pachytene
spermatocytes), the Dmrt1-related gene (Dmr) (testis-
specific lncRNA) are some other lncRNA identified in
different species and tissues [62]. During the embryonic

development of mouse, some lncRNA including AB06
3319, AK003491, and AK044800 have been reported to
be abundantly expressed in brain, muscle, liver, lung and
neuroendocrine tissues [8].

The lncRNAs as biomarkers for disease control
The lncRNAs are involved in various biological and
pathological processes including neurogenesis, oncogen-
esis and stem cell pluripotency[103]. Various lncRNA-
sare known to possess tumor suppressive and oncogenic
roles thus can act as a biomarker for disease diagnosis.
At present, there are limited reports on lncRNAs as vali-
dated biomarkers. The altered lncRNA expression pat-
tern in uterine corpus endometrial carcinoma (UCEC)
suggested that lncRNAs can act as predictive biomarkers
for a high-risk patient with endometrial carcinoma [101,
102, 105]. Highly up-regulated in liver cancer (HULC)
has been found to act as a diagnostic marker for hepato-
cellular cancer [2]. The level of PCAT1 in urine can
help in detection of poor prognosis prostate cancer
patients [41]. HOTAIR, MALAT1, microvascular inva-
sion of HCC (MVIH), H19 etc. are some other exam-
ples of lncRNA that can be used as biomarkers.
Alternatively, DD3 can be used as a negative prognos-
tic biomarker in prostate cancer [13]. The lncRNAs
can also be used as biomarkers for sepsis detection in
patients [22]. They are also involved in the pathogen-
esis of ovarian cancer [84].

Databases for lncRNAs
The lncRNA-pool in the genome can be
bio-computationally predicted, identified and finally vali-
dated through various experimental and computational
methods including microarray, SAGE, RNA-immuno-
precipitation RNA-Seq, in silico identification of open
reading frame (ORF) and by machine learning tech-
niques [63]. The data obtained from the de novo analysis
is further organized through the specific database. The
database can maintain, archive or retrieve the informa-
tion related to lncRNAs. This can further annotate the
features and will provide the interactions and functions
with different molecules in systems biology. To study
the structure and function of different lncRNAs, various
online databases have been identified to date. Some of
them are mentioned here with some descriptions.
lncRNAdb (http://www.lncRNAdb.org/) provides de-
tailed information about functional lncRNAs[9]. The se-
quence and structure information of human lncRNA is
available through LNCipedia (http://www.lncipedia.org)
[112]. ChIPBase (http://rna.sysu.edu.cn/chipbase/) data-
base helps to study transcription factor binding site and
motifs and provides the decoded information of tran-
scriptional regulatory network [18]. The study of the
expression of human and mouse lncRNA is available
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through a chip-based strategy of NRED (http://nred.
matticklab.com/cgi-bin/ncrnadb.pl) [97].

Conclusion
Significant research endeavors are being exercised on
non-coding RNAs (ncRNAs)with an aim to study their role
in biological processes, apply ncRNAs as biomarkers and to
unveil the systems biology. A decade ago, miRNAs were
the most popular ncRNA for scientific research and study
but now the other class of ncRNAs, lncRNAs is also on the
high priority to unveil their role in disease development
and control process. The available literature shows their
important contribution in metastasis and thus can be a tar-
get in cancer therapy. They can be used as disease bio-
marker and to explore systems biology. Last but not the
least, the transcription machinery of eukaryotic cells is par-
tially depicted by the major players like coding and
non-coding RNAs. Recent studies at Buratowski laboratory
of Harvand Medical School (https://buratowski.hms.
harvard.edu/) has postulated and experimentally validated
that the transcription process itself can modify the chroma-
tin that underscores the importance of several factors other
than noncoding RNAs like lncRNA [46]. In depth studies
are warranted to unveil the complete systems biology in-
volved in modulation of gene expression in eukaryotic cells.
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