Browse > Article
http://dx.doi.org/10.6564/JKMRS.2019.23.3.061

NMR hydrogen exchange study of miR156:miR156* duplexes  

Kim, Na-Hyun (Department of Chemistry and RINS, Gyeongsang National University)
Choi, Seo-Ree (Department of Chemistry and RINS, Gyeongsang National University)
Jin, Ho-Seong (Department of Chemistry and RINS, Gyeongsang National University)
Seo, Yeo-Jin (Department of Chemistry and RINS, Gyeongsang National University)
Lee, Joon-Hwa (Department of Chemistry and RINS, Gyeongsang National University)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.23, no.3, 2019 , pp. 61-66 More about this Journal
Abstract
RNAs exhibit distinct structural and dynamic features required for proper function. The hydrogen-bonded imino protons of RNAs are a probe of the conformational transition and dynamic feature. MicroRNAs originate from primary transcripts containing hairpin structures. The levels of mature miR156 influence the flowering time of plants. To understand the molecular mechanism of biological function of $miR156:miR156^*$ duplex, we performed hydrogen exchange study on the model RNAs mimicking two phenotypes of $miR156:miR156^*$, $miR156:miR156^*$ (m-miR156a) and $miR156:miR156^*$ (m-miR156g) duplexes. This study found that the internal bulge of m-miR156a destabilized the neighboring base-pairs, whereas the bulge structure of m-miR156g did not affect the thermal stabilities of the neighboring base-pairs.
Keywords
microRNA; miRNA156; flowering time; hydrogen exchange; NMR;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H.-E. Kim, W. Kim, A.-R. Lee, S. Jin, A R. Jun, N.-K. Kim, J.-H. Lee, and J. H. Ahn, Biochem. Biophys. Res. Commun. 484, 839 (2017)   DOI
2 J. C. Carrington and V. Ambros, Science 301, 336 (2003)   DOI
3 H. Lee, S. J. Yoo, J. H. Lee, W. Kim, S. K. Yoo, H. Fitzgerald, J.C. Carrington, and J. H. Ahn, Nucleic Acids Res. 38, 3081 (2010)   DOI
4 G. Wu and R. S. Poethig, Development 133, 3539 (2006)   DOI
5 F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, and A. Bax, A. J. Biomol. NMR 6, 277 (1995)
6 T. D. Goddard and D. G. Kneller, SPARKY 3. University of California, San Francisco, CA. (2003)
7 H.-E. Kim, Y.-G. Choi, A.-R. Lee, Y.-J. Seo, M.-Y. Kwon, and J.-H. Lee, J. Korean Magn. Reson. Soc. 18, 52 (2014)   DOI
8 Y.-G. Choi, H.-E. Kim, and J.-H. Lee, J. Korean Magn. Reson. Soc. 17, 76 (2013)   DOI
9 J. L. Leroy, N. Bolo, N. Figueroa, P. Plateau, and M. Gueron, J. Biomol. Struct. Dyn. 2, 915 (1985)   DOI
10 M. Gueron and J. L. Leroy, Methods Enzymol. 261, 383 (1995)   DOI
11 S.-R.Choi, N.-H. Kim, H.-S. Jin, Y.-J. Seo, J. Lee, and J.-H. Lee, Comp. Struct. Biotechnol. J. 17, 797 (2019)   DOI
12 J.-H. Lee and A. Pardi, Nucleic Acids Res. 35, 2965 (2007)   DOI
13 W. Kim, H.-E. Kim, A.-R. Lee, A R. Jun, M. G. Jung, J. H. Ahn, and J.-H. Lee, Nucleic Acids Res. 45, 875 (2017)   DOI