• Title/Summary/Keyword: mRNA levels

Search Result 2,603, Processing Time 0.035 seconds

Expression Profile Analysis of Zinc Transporters (ZIP4, ZIP9, ZIP11, ZnT9) in Gliomas and their Correlation with IDH1 Mutation Status

  • Kang, Xing;Chen, Rong;Zhang, Jie;Li, Gang;Dai, Peng-Gao;Chen, Chao;Wang, Hui-Juan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3355-3360
    • /
    • 2015
  • Background: Zinc transporters have been considered as essential regulators in many cancers; however, their mechanisms remain unknown, especially in gliomas. Isocitrate dehydrogenase 1(IDH1) mutation is crucial to glioma. This study aimed to investigate whether zinc transporters are correlated with glioma grade and IDH1 mutation status. Materials and Methods: IDH1 mutation status and mRNA expression of four zinc transporters (ZIP4, ZIP9, ZIP11, and ZnT9) were determined by subjecting a panel of 74 glioma tissue samples to quantitative real-time PCR and pyrosequencing. The correlations between the expression levels of these zinc transporter genes and the grade of glioma, as well as IDH1 mutation status, were investigated. Results: Among the four zinc transporter genes, high ZIP4 expression and low ZIP11 expression were significantly associated with higher grade (grades III and IV) tumors compared with lower grade (grades I and II) counterparts (p<0.0001). However, only ZIP11 exhibited weak correlation with IDH1 mutation status (p=0.045). Samples with mutations in IDH1 displayed higher ZIP11 expression than those without IDH1 mutations. Conclusions: This finding indicated that zinc transporters may interact with IDH1 mutation by direct modulation or action in some shared pathways or genes to promote the development of glioma. Zinc transporters may play an important role in glioma. ZIP4 and ZIP11 are promising molecular diagnostic markers and novel therapeutic targets. Nevertheless, the detailed biological function of zinc transporters and the mechanism of the potential interaction between ZIP11 and IDH1 mutation in gliomagenesis should be further investigated.

Circadian rhythm of melatonin secretion and growth-related gene expression in the tiger puffer Takifugu rubripes

  • Kim, Byeong-Hoon;Hur, Sung-Pyo;Hur, Sang-Woo;Takeuchi, Yuki;Takemura, Akihiro;Lee, Young-Don
    • Fisheries and Aquatic Sciences
    • /
    • v.20 no.8
    • /
    • pp.17.1-17.8
    • /
    • 2017
  • Somatostatin (SS) and growth hormone-releasing hormone (GHRH) are primary factors regulating growth hormone (GH) secretion in the pituitary. To date, it remains unknown how this rhythm is controlled endogenously, although there must be coordination of circadian manners. Melatonin was the main regulator in biological rhythms, and its secretion has fluctuation by photic information. But relationship between melatonin and growth-related genes (ghrh and ss) is unclear. We investigated circadian rhythms of melatonin secretion, ghrh and ss expressions, and correlation between melatonin with growth-related genes in tiger puffer Takifugu rubripes. The melatonin secretion showed nocturnal rhythms under light and dark (LD) conditions. In constant light (LL) condition, melatonin secretion has similar patterns with LD conditions. ss1 mRNA was high during scotophase under LD conditions. But ss1 rhythms disappeared in LL conditions. Ghrh appeared opposite expression compared with melatonin levels or ss1 expression under LD and LL. In the results of the melatonin injection, ghrh and ss1 showed no significant expression compared with control groups. These results suggested that melatonin and growth-related genes have daily or circadian rhythms in the tiger puffer. Further, we need to know mechanisms of each ss and ghrh gene regulation.

Molecular Identification and Morphological Description for Larvae and Juveniles of Deepwater Dragonet Bathycallionymus kaianus (Callionymidae, PISCES) from Korea (한국산 남방돛양태[Bathycallionymus kaianus (돛양태과)] 자치어의 분자 동정 및 형태 기재)

  • Kim, Jin-Seok;Kim, Jin-Koo;Park, Jeong-Ho;Ji, Hwan-Sung;Lee, Hae-Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.1
    • /
    • pp.74-82
    • /
    • 2020
  • Dragonet fish (Callionymidae), living in benthic upper 900 m of all subtropical, tropical and temperate oceans, comprises 200 species in 20 genera worldwide, of which 18 species in 6 genera occur in Korea. Although dragonet fish plays an important role in linking between top predators and lower trophic levels, there are only few studies about their early life history. Herein, we present molecular and morphological data on larvae and juveniles of Bathycallionymus kaianus (Günther, 1880) collected from the Korean waters. During 2016 to 2018, one preflexion larvae [2.69 in total length (TL)], three flexion larvae (3.65 and 4.77 mm TL), six postflexion larvae (6.07 and 7.94 mm TL), and three juveniles (10.81 and 12.26 mm TL) were collected in the East Sea, Korea Strait, and Jeju Island using Bongo net. Of them, 13 individuals were identified through molecular markers (COI or 16S rRNA) and morphologically described. The larvae of B. kaianus are well distinguished from other species of Callionymidae in melanophore distribution, body shape and development of preopercular spine. It was very similar to larvae of two Repomucenus species, R. valenciennei and R. virgis, but was clearly distinguished in melanophore distribution, preopercular spine development, and head shape.

Elicitation of Penicillin Biosynthesis by Alginate in Penicillium chrysogenum, Exerted on pcbAB, pcbC, and penDE Genes at the Transcriptional Level

  • Liu, Gang;Casqueiro, Javier;Gutierrez, Santiago;Kosalkova, Katarina;Castillo, Nancy-Isabel;Martin, Juan-F.
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.812-818
    • /
    • 2001
  • Alginate and alginate-derived oligomannuronate enhanced penicillin production in shake flask and fermentor cultures of Penicillium chrysogenum Wis 54-1255 (containing a single copy of the penicillin gene cluster) and in the high producter strain P. chrysogenum AS-P-99 (containing multiple copies of the penicillin gene cluster). Alginate was not used as a single carbon source by P. chryogenum. The stimulatory effect on penicillin production was observed in a defined medium and, to a lower extent, in a complex production medium containing corn steep liquor. Alginate-supplemented cells showed higher transcript levels of the three penicillin biosynthetic genes, pcbAB, pcbC, and penDE, than cells grown in the absence of alginate. The promoters of the pcbAB, pcbC, and penDE genes were coupled to the reporter lacZ gene and introduced as monocopy constructions in P. chrysogenum Wis 54-1225 npe10 by targeted integration in the pyrG locus; the reporter ${\beta}$-galactosidase activity expressed from the three promoters was stimulated by alginate added to the culture medium of the transformants. These results indicate that the stimulation of penicillin production by alginate was derived from an increase in the transcriptional activity of the penicillin biosynthesis genes. The induction by alginate of the transcription of the three penicillin biosynthetic genes is good example of the coordinated induction of secondary metabolism genes by elicitors of plant (or microbial) origin.

  • PDF

Anti-inflammatory effect of methanol extract from Erigeron Canadensis L. may be involved with upregulation of heme oxygenase-1 expression and suppression of $NF{\kappa}B$ and MAPKs activation in macrophages

  • Sung, Jeehye;Sung, Misun;Kim, Younghwa;Ham, Hyeonmi;Jeong, Heon-Sang;Lee, Junsoo
    • Nutrition Research and Practice
    • /
    • v.8 no.4
    • /
    • pp.352-359
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: In this study, we determined the anti-inflammatory activities and the underlying molecular mechanisms of the methanol extract from Erigeron Canadensis L. (ECM) in LPS-stimulated RAW264.7 macrophage cells. MATERIALS/METHODS: The potential anti-inflammatory properties of ECM were investigated by using RAW264.7 macrophages. We used western blot assays and real time quantitative polymerase chain reaction to detect protein and mRNA expression, respectively. Luciferase assays were performed to determine the transactivity of transcription factors. RESULTS: ECM significantly inhibited inducible nitric oxide synthase (iNOS)-derived NO and cyclooxygenase-2 (COX-2) derived PGE2 production in LPS-stimulated RAW264.7 macrophages. These inhibitory effects of ECM were accompanied by decreases in LPS-induced nuclear translocations and transactivities of $NF{\kappa}B$. Moreover, phosphorylation of mitogen-activated protein kinase (MAPKs) including extracellular signal-related kinase (ERK1/2), p38, and c-jun N-terminal kinase (JNK) was significantly suppressed by ECM in LPS-stimulated RAW264.7 macrophages. Further studies demonstrated that ECM by itself induced heme oxygenase-1 (HO-1) protein expression at the protein levels in dose-dependent manner. However, zinc protoporphyrin (ZnPP), a selective HO-1 inhibitor, abolished the ECM-induced suppression of NO production. CONCLUSIONS: These results suggested that ECM-induced HO-1 expression was partly responsible for the resulting anti-inflammatory effects. These findings suggest that ECM exerts anti-inflammatory actions and help to elucidate the mechanisms underlying the potential therapeutic values of Erigeron Canadensis L.

Exosomes from CIITA-Transfected CT26 Cells Enhance Anti-tumor Effects

  • Fan, Wen;Tian, Xing-De;Huang, E.;Zhang, Jia-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.987-991
    • /
    • 2013
  • Aim: To study anti-tumor effects of exosomes from class II transactivator (CIITA) gene transfected CT26 cells. Methods: In this study, we established an MHC class II molecule-expressing murine colon cancer cell line (CT26-CIITA) by transduction of the CIITA gene. Immune effects in vitro and tumor protective results in vivo were tested and monitored. Results: Exosomes from CT26-CIITA cells were found to contain a high level of MHC class II protein. When loaded on dendritic cells (DCs), exosomes from CT26-CIITA cells significantly increased expression of MHC class II molecules, CD86 and CD80, as compared to exosomes from CT26 cells. In vitro assays using co-culture of immunized splenocytes and exosome-loaded DCs demonstrated that CIITA-Exo enhanced splenocyte proliferation and IFN-${\gamma}$ production of CD4+T cells, while inhibiting IL-10 secretion. In addition, compared to exosomes from CT26 cells, CT26-CIITA-derived exosomes induced higher TNF-${\alpha}$ and IL-12 mRNA levels. A mouse tumour preventive model showed that CT26-CIITA derived exosomes significantly inhibited tumour growth in a dose-dependent manner and significantly prolonged the survival time of tumour-bearing mice. Conclusion: Our findings indicate that CT26-CIITA-released exosomes are more efficient to induce anti-tumour immune responses, suggesting a potential role of MHC class II-containing tumour exosomes as cancer vaccine candidates.

CXCL12-CXCR4 Promotes Proliferation and Invasion of Pancreatic Cancer Cells

  • Shen, Bo;Zheng, Ma-Qing;Lu, Jian-Wei;Jiang, Qian;Wang, Tai-Hong;Huang, Xin-En
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5403-5408
    • /
    • 2013
  • Objective: CXCL12 exerts a wide variety of chemotactic effects on cells. Evidence indicates that CXCL12, in conjunction with its receptor, CXCR4, promotes invasion and metastasis of tumor cells. Our objective was to explore whether the CXCL12-CXCR4 biological axis might influence biological behavior of pancreatic cancer cells. Methods: Miapaca-2 human pancreatic cancer cells were cultured under three different conditions: normal medium (control), medium + recombinant CXCL12 (CXCL12 group), or medium + CXCR4-inhibitor AMD3100 (AMD3100 group). RT-PCR was applied to detect mRNA expression levels of CXCL12, CXCR4, matrix metalloproteinase 2 (MMP-2), MMP-9, and human urokinase plasminogen activator (uPA). Additionally, cell proliferation and invasion were performed using CCK-8 colorimetry and transwell invasion assays, respectively. Results: CXCL12 was not expressed in Miapaca-2 cells, but CXCR4 was detected, indicating that these cells are capable of receiving signals from CXCL12. Expression of extracellular matrix-degrading enzymes MMP-2, MMP-9, and uPA was upregulated in cells exposed to exogenous CXCL12 (P<0.05). Additionally, both proliferation and invasion of pancreatic cancer cells were enhanced in the presence of exogenous CXCL12, but AMD3100 intervention effectively inhibited these processes (P<0.05). Conclusions: The CXCL12-CXCR4 biological axis plays an important role in promoting proliferation and invasion of pancreatic cancer cells.

Expression of Gpnmb in NK Cell Development from Hematopoietic Stem Cells

  • Shin, Na-Ra;Lee, Ji-Won;Lee, Ji-Won;Jeong, Mi-Ra;Kim, Mi-Sun;Lee, Suk-Hyung;Yoon, Suk-Ran;Chung, Jin-Woong;Kim, Tae-Don;Choi, In-Pyo
    • IMMUNE NETWORK
    • /
    • v.8 no.2
    • /
    • pp.53-58
    • /
    • 2008
  • Background: Molecular mechanisms of natural killer (NK) cell development from hematopoietic stem cells (HSCs) have not been clearly elucidated, although the roles of some genes in NK cell development have been reported previously. Thus, searching for molecules and genes related NK cell developmental stage is important to understand the molecular events of NK cell development. Methods: From our previous SAGE data-base, Gpnmb (Glycoprotein non-metastatic melanoma protein B) was selected for further analysis. We confirmed the level of mRNA and protein of Gpnmb through RT-PCR, quantitative PCR, and FACS analysis. Then we performed cell-based ELISA and FACS analysis, to know whether there are some molecules which can bind to Gpnmb. Using neutralizing antibody, we blocked the interaction between NK cells and OP9 cells, and checked IFN-${\gamma}$ production by ELISA kit. Results: Gpnmb expression was elevated during in vitro developmental stage and bound to OP9 cells, but not to NK precursor cells. In addition, we confirmed that the levels of Gpnmb were increased at NK precursor stage in vivo. We confirmed syndecan4 as a candidate of Gpnmb's binding molecule. When the interaction between NK cells and OP9 cells were inhibited in vitro, IFN-${\gamma}$ production from NK cells were reduced. Conclusion: Based on these observations, it is concluded that Gpnmb has a potential role in NK cell development from HSCs.

Characterization of an Extracytoplasmic Chaperone Spy in Protecting Salmonella against Reactive Oxygen/Nitrogen Species

  • Park, Yoon Mee;Lee, Hwa Jeong;Bang, Iel Soo
    • International Journal of Oral Biology
    • /
    • v.39 no.4
    • /
    • pp.207-213
    • /
    • 2014
  • Antimicrobial actions of reactive oxygen/nitrogen species (ROS/RNS) derived from products of NADPH oxidase and inducible nitric oxide (NO) synthase in host phagocytes inactivate various bacterial macromolecules. To cope with these cytotoxic radicals, pathogenic bacteria have evolved to conserve systems necessary for detoxifying ROS/RNS and repairing damages caused by their actions. In response to these stresses, bacteria also induce expression of molecular chaperones to aid in ameliorating protein misfolding. In this study, we explored the function of a newly identified chaperone Spy, that is localized exclusively in the periplasm when bacteria exposed to conditions causing spheroplast formation, in the resistance of Salmonella Typhimurium to ROS/RNS. A spy deletion mutant was constructed in S. Typhimurium by a PCR-mediated method of one-step gene inactivation with ${\lambda}$ Red recombinase, and subjected to ROS/RNS stresses. The spy mutant Salmonella showed a modest decrease in growth rate in NO-producing cultures, and no detectable difference of growth rate in $H_2O_2$ containing cultures, compared with that of wild type Salmonella. Quantitative RT-PCR analysis showed that spy mRNA levels were similar regardless of both stresses, but were increased considerably in Salmonella mutants lacking the flavohemoglobin Hmp, which are incapable of NO detoxification, and lacking an alternative sigma factor RpoS, conferring hypersusceptibility to $H_2O_2$. Results demonstrate that Spy expression can be induced under extreme conditions of both stresses, and suggest that the protein may have supportive roles in maintaining proteostasis in the periplasm where various chaperones may act in concert with Spy, thereby protecting bacteria against toxicities of ROS/RNS.

Inhibitory effects of Doenjang, Korean traditional fermented soybean paste, on oxidative stress and inflammation in adipose tissue of mice fed a high-fat diet

  • Nam, Ye Rim;Won, Sae Bom;Chung, Young-Shin;Kwak, Chung Shil;Kwon, Young Hye
    • Nutrition Research and Practice
    • /
    • v.9 no.3
    • /
    • pp.235-241
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Doenjang, Korean traditional fermented soybean paste has been reported to have an anti-obesity effect. Because adipose tissue is considered a major source of inflammatory signals, we investigated the protective effects of Doenjang and steamed soybean on oxidative stress and inflammation in adipose tissue of diet-induced obese mice. MATERIALS/METHODS: Male C57BL/6J mice were fed a low fat diet (LF), a high-fat diet (HF), or a high-fat containing Doenjang diet (DJ) or a high-fat containing steamed soybean diet (SS) for 11 weeks. RESULTS: Mice fed a DJ diet showed significantly lower body and adipose tissue weights than those in the HF group. Although no significant differences in adipocyte size and number were observed among the HF diet-fed groups, consumption of Doenjang alleviated the incidence of crown-like structures in adipose tissue. Consistently, we observed significantly reduced mRNA levels of oxidative stress markers (heme oxygenase-1 and $p40^{phox}$), pro-inflammatory adipokines (tumor necrosis factor alpha and macrophage chemoattractant protein-1), macrophage markers (CD68 and CD11c), and a fibrosis marker (transforming growth factor beta 1) by Doenjang consumption. Gene expression of anti-inflammatory adipokine, adiponectin was significantly induced in the DJ group and the SS group compared to the HF group. The anti-oxidative stress and anti-inflammatory effects observed in mice fed an SS diet were not as effective as those in mice fed a DJ diet, suggesting that the bioactive compounds produced during fermentation and aging may be involved in the observed health-beneficial effects of Doenjang. CONCLUSIONS: Doenjang alleviated oxidative stress and restored the dysregulated expression of adipokine genes caused by excess adiposity. Therefore, Doenjang may ameliorate systemic inflammation and oxidative stress in obesity via inhibition of inflammatory signals of adipose tissue.