• Title/Summary/Keyword: mRNA expression profiles

Search Result 149, Processing Time 0.04 seconds

Effects of Boshimgeonbi-tang on Gene Expression in Hypothalamus of Immobilization-stressed Mouse (보심건비탕(補心健脾湯) 투여가 Stress 유발 Mouse의 Hypothalamus 유전자 발현에 미치는 영향)

  • Lee Seoung-Hee;Chang Gyu-Tae;Kim Jang-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.6
    • /
    • pp.1585-1593
    • /
    • 2005
  • The genetic effects of restraint stress challenge on HPA axis and the therapeutic effect of Boshimgeonbi-tang on the stress were studied with cDNA microarray analyses, RT-PCR on hypothalamus using an immobilization-stress mice as an animal model. Male CD-1 mice were restrained in a tightly fitted and ventilated vinyl holder for 2hrs once a day, and this challenge was repeated for seven· consecutive days. In the change of body weight it showed that the Boshimgeonbi-tang is effected recovery on weight loss caused by the immobilization-stress. Seven days later, total RNA was extracted from the organs of the mouse, body-labeled with $CyDye^{TM}$ fluorescence dyes and then hybridized to CDNA microarray chip. Scanning and analyzing the array slides were carried out using GenePix4000 series scanner and GenePix $Pro^{TM}$ analyzing program, respectively. The expression profiles of 109 genes out of 6000 genes on the chip were significantly modulated in hypothalamus by the immobilization stress. Energy metabolism-, lipid metabolism-, apoptosis-, stress protein, transcriptional factor, and signal transduction-related genes were transcriptionally activated whereas DNA repair-, protein biosysthesis-, and structure integrity-related genes were down-regulated in hypothalamus. The 58 genes were up-regulated by the mRNA expression folds of 1.5 to 7.9. and the 51 genes were down-regulated by 1.5 - 5.5 fold. The 11 genes among them were selected to confirm the expression profiles by RT-PCR. The mRNA expression levels of Tnfrsf1a (apoptosis), Calm2 (cell cycle), Bag3 (apoptosis), Ogg1 (DNA repair), Aatk (apoptosis), Dffa (apoptosis), Fkbp5 (protein folding) were restored to the normal one by the treatment of Boshimgeonbi-tang.

MicroRNAs and Metastasis-related Gene Expression in Egyptian Breast Cancer Patients

  • Hafez, Mohamed M.;Hassan, Zeinab K.;Zekri, Abdel Rahman N.;Gaber, Ayman A.;Rejaie, Salem S. Al;Sayed-Ahmed, Mohamed M.;Shabanah, Othman Al
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.591-598
    • /
    • 2012
  • Aim and background: MicroRNAs (miRNAs) are a class of naturally occurring small noncoding RNAs that regulate gene expression, cell growth, differentiation and apoptosis by targeting mRNAs for translational repression or cleavage. The present study was conducted to study miRNAs in Egyptian breast cancer (BC) and their relation to metastasis, tumor invasion and apoptosis in addition to their association with the ER and PR statuses. Methods: Real Time RT-PCR was performed to identify the miRNA expression level of eight miRNAs and eight metastatic-related genes in 40 breast cancer samples and their adjacent non-neoplastic tissues. The expression levels of each miRNA relative to U6 RNA were determined using the $^{2-{\Delta}}CT$ method. Also, miRNA expression profiles of the BC and their corresponding ANT were evaluated. Results: The BC patients showed an up-regulation in miRNAs (mir-155, mir-10, mir-21 and mir-373) with an upregulation in MMP2, MMp9 and VEGF genes. We found down regulation in mir-17p, mir-126, mir-335, mir-30b and also TIMP3, TMP1 and PDCD4 genes in the cancer tissue compared to the adjacent non-neoplastic tissues. Mir -10b, mir -21, mir-155 and mir373 and the metastatic genes MMP2, MMP9 and VEGF were significantly associated with an increase in tumor size (P < 0.05). No significant difference was observed between any of the studied miRNAs regarding lymph node metastasis. Mir-21 was significantly over-expressed in ER-/PR-cases. Conclusion: Specific miRNAs (mir-10, mir-21, mir-155, mir-373, mir-30b, mir-126, mir-17p, mir-335) are associated with tumor metastasis and other clinical characteristics for BC, facilitating identification of individuals who are at risk.

Analysis of H3K4me3-ChIP-Seq and RNA-Seq data to understand the putative role of miRNAs and their target genes in breast cancer cell lines

  • Kotipalli, Aneesh;Banerjee, Ruma;Kasibhatla, Sunitha Manjari;Joshi, Rajendra
    • Genomics & Informatics
    • /
    • v.19 no.2
    • /
    • pp.17.1-17.13
    • /
    • 2021
  • Breast cancer is one of the leading causes of cancer in women all over the world and accounts for ~25% of newly observed cancers in women. Epigenetic modifications influence differential expression of genes through non-coding RNA and play a crucial role in cancer regulation. In the present study, epigenetic regulation of gene expression by in-silico analysis of histone modifications using chromatin immunoprecipitation sequencing (ChIP-Seq) has been carried out. Histone modification data of H3K4me3 from one normal-like and four breast cancer cell lines were used to predict miRNA expression at the promoter level. Predicted miRNA promoters (based on ChIP-Seq) were used as a probe to identify gene targets. Five triple-negative breast cancer (TNBC)-specific miRNAs (miR153-1, miR4767, miR4487, miR6720, and miR-LET7I) were identified and corresponding 13 gene targets were predicted. Eight miRNA promoter peaks were predicted to be differentially expressed in at least three breast cancer cell lines (miR4512, miR6791, miR330, miR3180-3, miR6080, miR5787, miR6733, and miR3613). A total of 44 gene targets were identified based on the 3'-untranslated regions of downregulated mRNA genes that contain putative binding targets to these eight miRNAs. These include 17 and 15 genes in luminal-A type and TNBC respectively, that have been reported to be associated with breast cancer regulation. Of the remaining 12 genes, seven (A4GALT, C2ORF74, HRCT1, ZC4H2, ZNF512, ZNF655, and ZNF608) show similar relative expression profiles in large patient samples and other breast cancer cell lines thereby giving insight into predicted role of H3K4me3 mediated gene regulation via the miRNA-mRNA axis.

The effect of fucoxanthin rich power on the lipid metabolism in rats with a high fat diet

  • Ha, Ae Wha;Kim, Woo Kyoung
    • Nutrition Research and Practice
    • /
    • v.7 no.4
    • /
    • pp.287-293
    • /
    • 2013
  • This study determined the effects of fucoxanthin on gene expressions related to lipid metabolism in rats with a high-fat diet. Rats were fed with normal fat diet (NF, 7% fat) group, high fat diet group (HF, 20% fat), and high fat with 0.2% fucoxanthin diet group (HF+Fxn) for 4 weeks. Body weight changes and lipid profiles in plasma, liver, and feces were determined. The mRNA expressions of transcriptional factors such as sterol regulatory element binding protein (SREBP)-1c, Carnitine palmitoyltransferase-1 (CPT1), Cholesterol $7{\alpha}$-hydroxylase1 (CYP7A1) as well as mRNA expression of several lipogenic enzymes were determined. Fucoxanthin supplements significantly increased plasma high density lipoprotein (HDL) concentration (P < 0.05). The hepatic total lipids, total cholesterols, and triglycerides were significantly decreased while the fecal excretions of total lipids, cholesterol, and triglycerides were significantly increased in HF+Fxn group (P < 0.05). The mRNA expression of hepatic Acetyl-CoA carboxylase (ACC), Fatty acid synthase (FAS), and Glucose-6-phosphate dehydrogenase (G6PDH) as well as SREBP-1C were significantly lower in HF+Fxn group compared to the HF group (P < 0.05). The hepatic mRNA expression of Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) and Acyl-CoA cholesterol acyltransferase (ACAT) were significantly low while lecithin-cholesterol acyltransferase (LCAT) was significantly high in the HF+Fxn group (P < 0.05). There was significant increase in mRNA expression of CPT1 and CYP7A1 in the HF+Fxn group, compared to the HF group (P < 0.05). In conclusion, consumption of fucoxanthin is thought to be effective in improving lipid and cholesterol metabolism in rats with a high fat diet.

Identification of a novel PARP4 gene promoter CpG locus associated with cisplatin chemoresistance

  • Hye Youn Sung;Jihye Han;Yun Ju Chae;Woong Ju;Jihee Lee Kang;Ae Kyung Park;Jung-Hyuck Ahn
    • BMB Reports
    • /
    • v.56 no.6
    • /
    • pp.347-352
    • /
    • 2023
  • The protein family of poly (ADP-ribose) polymerases (PARPs) is comprised of multifunctional nuclear enzymes. Several PARP inhibitors have been developed as new anticancer drugs to combat resistance to chemotherapy. Herein, we characterized PARP4 mRNA expression profiles in cisplatin-sensitive and cisplatin-resistant ovarian cancer cell lines. PARP4 mRNA expression was significantly upregulated in cisplatin-resistant ovarian cancer cell lines, and this upregulation was associated with the hypomethylation of specific cytosine-phosphate-guanine (CpG) sites (cg18582260 and cg17117459) on its promoter. Reduced PARP4 expression was restored by treating cisplatin-sensitive cell lines with a demethylation agent, implicating the epigenetic regulation of PARP4 expression by promoter methylation. Depletion of PARP4 expression in cisplatin-resistant cell lines reduced cisplatin chemoresistance and promoted cisplatin-induced DNA fragmentation. The differential mRNA expression and DNA methylation status at specific PARP4 promoter CpG sites (cg18582260 and cg17117459) according to cisplatin responses, was further validated in primary ovarian tumor tissues. The results showed significantly increased PARP4 mRNA expressions and decreased DNA methylation levels at specific PARP4 promoter CpG sites (cg18582260 and cg17117459) in cisplatin-resistant patients. Additionally, the DNA methylation status at cg18582260 CpG sites in ovarian tumor tissues showed fairly clear discrimination between cisplatin-resistant patients and cisplatin-sensitive patients, with high accuracy (area under the curve = 0.86, P = 0.003845). Our findings suggest that the DNA methylation status of PARP4 at the specific promoter site (cg18582260) may be a useful diagnostic biomarker for predicting the response to cisplatin in ovarian cancer patients.

Alterations of mRNA and lncRNA profiles associated with the extracellular matrix and spermatogenesis in goats

  • Chen, Haolin;Miao Xiaomeng;Xu, Jinge;Pu, Ling;Li, Liang;Han, Yong;Mao, Fengxian;Ma, Youji
    • Animal Bioscience
    • /
    • v.35 no.4
    • /
    • pp.544-555
    • /
    • 2022
  • Objective: Spermatozoa are produced within the seminiferous tubules after sexual maturity. The expression levels of mRNAs and lncRNAs in testicular tissues are different at each stage of testicular development and are closely related to formation of the extracellular matrix (ECM) and spermatogenesis. Therefore, we set out to study the expression of lncRNAs and mRNAs during the different developmental stages of the goat testis. Methods: We constructed 12 RNA libraries using testicular tissues from goats aged 3, 6, and 12 months, and studied the functions of mRNAs and lncRNAs using the gene ontogeny (GO) and Kyoto encyclopedia of genes and genomes (KEGG) databases. Relationships between differentially expressed genes (DEGs) were analyzed by lncRNA-mRNA co-expression network and protein-protein interaction network (PPI). Finally, the protein expression levels of matrix metalloproteinase 2 (MMP2), insulin-like growth factor 2 (IGF2), and insulin-like growth factor-binding protein 6 (IGFBP6) were detected by western blotting. Results: We found 23, 8, and 135 differentially expressed lncRNAs and 161, 12, and 665 differentially expressed mRNAs that were identified between 3 vs 6, 6 vs 12, and 3 vs 12 months, respectively. GO, KEGG, and PPI analyses showed that the differential genes were mainly related to the ECM. Moreover, MMP2 was a hub gene and co-expressed with the lncRNA TCONS-0002139 and TCONS-00093342. The results of quantitative reverse-transcription polymerase chain reaction verification were consistent with those of RNA-seq sequencing. The expression trends of MMP2, IGF2, and IGFBP6 protein were the same as that of mRNA, which all decreased with age. IGF2 and MMP2 were significantly different in the 3 vs 6-month-old group (p<0.05). Conclusion: These results improve our understanding of the molecular mechanisms involved in sexual maturation of the goat testis.

The effects of Brassica juncea L. leaf extract on obesity and lipid profiles of rats fed a high-fat/high-cholesterol diet

  • Lee, Jae-Joon;Kim, Hyun A;Lee, Joomin
    • Nutrition Research and Practice
    • /
    • v.12 no.4
    • /
    • pp.298-306
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Obesity is a global health problem of significant importance which increases mortality. In place of anti-obesity drugs, natural products are being developed as alternative therapeutic materials. In this study, we investigated the effect of Brassica juncea L. leaf extract (BLE) on fat deposition and lipid profiles in high-fat, high-cholesterol diet (HFC)-induced obese rats. MATERIALS/METHODS: Male Sprague-Dawley rats were divided into four groups (n = 8 per group) according to diet: normal diet group (ND), high-fat/high-cholesterol diet group (HFC), HFC with 3% BLE diet group (HFC-A1), and HFC with 5% BLE diet group (HFC-A2). Each group was fed for 6 weeks. Rat body and adipose tissue weights, serum biochemical parameters, and tissue lipid contents were determined. The expression levels of mRNA and proteins involved in lipid and cholesterol metabolism were determined by reverse transcription polymerase chain reaction and western blot analysis, respectively. RESULTS: The HFC-A2 group showed significantly lower body weight gain and food efficiency ratio than the HFC group. BLE supplementation caused mesenteric, epididymal, and total adipose tissue weights to decrease. The serum levels of triglyceride, total cholesterol, and low-density lipoprotein cholesterol were significantly reduced, and high-density lipoprotein cholesterol was significantly increased in rats fed BLE. These results were related to lower glucose-6-phosphate dehydrogenase, acetyl-coA carboxylase, and fatty acid synthase mRNA expression, and to higher expression of the cholesterol $7{\alpha}$-hydroxylase and low density lipoprotein-receptor, as well as increased protein levels of peroxisome proliferator-activated receptor ${\alpha}$. Histological analysis of the liver revealed decreased lipid droplets in HFC rats treated with BLE. CONCLUSIONS: Supplementation of HFC with 3% or 5% BLE inhibited body fat accumulation, improved lipid profiles, and modulated lipogenesis- and cholesterol metabolism-related gene and protein expression.

Administration of red ginseng regulates microRNA expression in a mouse model of endometriosis

  • Lee, Jae Hoon;Park, Ji Hyun;Won, Bo Hee;Im, Wooseok;Cho, SiHyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.4
    • /
    • pp.337-346
    • /
    • 2021
  • Objective: Red ginseng (RG) exerts anti-inflammatory, anti-proliferative, and immunomodulatory effects on endometriosis through the regulation of microRNA (miRNA) expression. It may also ameliorate endometriosis by affecting the expression of multiple miRNAs simultaneously, rather than acting on a single miRNA at a given time. Since studies on the overall effects of RG on endometriosis via the regulation of miRNA expression are lacking, the current study aimed to explore the global effect of RG on miRNA expression in a mouse model of endometriosis. Methods: To establish the mouse model, the uterine horn of donor mice was implanted into the lateral side of the recipients' peritoneum, followed by vehicle or RG treatment for 8 weeks. Results: To confirm the effects of RG on the established mouse model, the size of the implanted uterus was measured; it was found to be lower in mice from the RG group than in mice from the control group. miRNA expression profiles in the implanted uterus of the mouse model of endometriosis after vehicle or RG administration were analyzed using microarray technology. Thereafter, seven candidate miRNAs and 125 candidate genes (miRNA targets) were identified through a bioinformatics analysis. Conclusion: The present findings suggest that RG regulates the expression of multiple miRNAs and mRNAs, thereby alleviating endometriosis in a mouse model of the disease.

Expression Profiles of Cellular Retinol-binding Protein, Type II (CRBP II) in Erlang Mountainous Chickens

  • Yin, H.D.;Tian, K.;Li, D.Y.;Gilbert, E.R.;Xiao, L.H.;Chen, S.Y.;Wang, Y.;Liu, Y.P.;Zhao, X.L.;Zhu, Q.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.310-315
    • /
    • 2014
  • Cellular retinol-binding protein II (CRBP II) belongs to the family of cellular retinol-binding proteins and plays a major role in absorption, transport, and metabolism of vitamin A. In addition, because vitamin A is correlated with reproductive performance, we measured CRBP II mRNA abundance in erlang mountainous chickens by real-time PCR using the relative quantification method. The expression of CRBP II showed a tissue-specific pattern and egg production rate-dependent changes. The expression was very high (p<0.05) in jejunum and liver, intermediate in kidney, ovary, and oviduct, and lowest (p<0.05) in heart, hypothalamus, and pituitary. In the hypothalamus, oviduct, ovary, and pituitary, CRBP II mRNA abundance were correlated to egg production rate, which increased from 12 wk to 32 wk, peaked at 32 wk relative to the other time points, and then decreased from 32 wk to 45 wk. In contrast, the expression of CRBP II mRNA in heart, jejunum, kidney, and liver was not different at any of the ages evaluated in this study. These data may help to understand the genetic basis of vitamin A metabolism, and suggest that CRBP II may be a candidate gene to affect egg production traits in chickens.