• Title/Summary/Keyword: lytic

Search Result 280, Processing Time 0.022 seconds

유산균 용균 효소를 생산하는 미생물의 분리, 동정 및 배양조건

  • 신원철;마호우
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.3
    • /
    • pp.299-303
    • /
    • 1996
  • Isolation, identification, and culture conditions of a lytic enzyme producing microorganism against Lacto- bacillus plantarum were investigated. The selected strain was gram-positive, rod (0.7 $\times$ 2.7 $\mu$m in size), and non-motile. The strain did not have any flagella and spores. According to its cultural and physiological characteristics, the strain was identified as Bacillus sp. The optimal pH and temperature for the production of lytic enzyme were 8.0 and 30$\circ$C, respectively. The maximum enzyme activity showed 1.5 units/ml in the medium composed of 1% peptone and 0.1% NaCl.

  • PDF

Production of Brewer's Yeast Extract by Enzymatic Method (효소 분해법에 의한 맥주효모 추출물의 제조)

  • 이시경;박경호;백운화;유주현
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.3
    • /
    • pp.276-280
    • /
    • 1993
  • Cell lytic enzyme, 5'-phosphodiesterase, and AMP-deaminase were used to produce yeast extract as a natural seasoning from beer yeast cells. Prior to the addition of cell lytic enzyme, heat treatment was performed to increase the cell wall degradation` the optimum condition of the cell lytic enzyme was 50C at pH 7.0. The production yields by the enzymatic method and conventional autolysis method were 42% and 35%, respectively. The total quantity of 5'-nucleotides, GMP and IMP, produced by enzymatic method was increased by 45% than that by the conventional method. Futhermore, the operation time of enzymatic method was only 6.5 hrs, significantly reduced from 24 hrs of the conventional method.

  • PDF

Dicyma sp. YCH-37이 생산하는 효모세포벽 용해효소 I. 생산균주의 분리 및 효소의 정제

  • Chung, Hee-Chul;Hahm, Byoung-Kwon;Bai, Dong-Hoon;Hasegawa, Toru;Yu, Ju-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.4
    • /
    • pp.445-451
    • /
    • 1996
  • The strain YCH-37, which produces yeast cell wall lytlc enzyme, was isolated from soil. From the microscopic observation, morphological and cultural characteristics, this strain was identified to fungus, Dicyma sp. So, we named this strain as Dicyma sp. YCH-37. The lytic enzyme effectively lysed Salmonella typhimurium among intact living bacteria and Torulopsis, Hansenula, Zygosaccharomyces among intact living yeast, as well as autoclaved yeast strains. The yeast cell wall lytic enzyme was succesively purified to 204 folds with 13% yields through yeast glucan affinity adsorption and DEAE-cellulose column chromatography. The enzyme was identified to monomeric protein with molecular weight of 25,000 daltons from the results of SDS-PAGE and gel filtration. The optimum pH and temperature for the yeast lytic activity were 8.0 and 50$\circ$C, respectively. The enzyme was stable up to 40$\circ$C, and between pH 4.0-pH 10.0.

  • PDF

Studies on Lytic, Tailed Bacillus cereus-specific Phage for Use in a Ferromagnetoelastic Biosensor as a Novel Recognition Element

  • Choi, In Young;Park, Joo Hyeon;Gwak, Kyoung Min;Kim, Kwang-Pyo;Oh, Jun-Hyun;Park, Mi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.87-94
    • /
    • 2018
  • This study investigated the feasibility of the lytic, tailed Bacillus cereus-specific phage for use in a ferromagnetoelastic (FME) biosensor as a novel recognition element. The phage was immobilized at various concentrations through either direct adsorption or a combination of 11-mercapto-1-undecanoic acid (11-MUA) and [N-(3-dimethylaminopropyl)-N'-carbodiimide hydrochloride and N-hydroxysuccinimide (EDC/NHS)]. The effects of time and temperature on its lytic properties were investigated through the exposure of B. cereus (4 and 8 logCFU/ml) to the phage (8 logPFU/ml) for various incubation periods at $22^{\circ}C$ and at various temperatures for 30 and 60 min. As the phage concentration increased, both immobilization methods also significantly increased the phage density (p < 0.05). SEM images confirmed that the phage density on the FME platform corresponded to the increased phage concentration. As the combination of 11-MUA and EDC/NHS enhanced the phage density and orientation by up to 4.3-fold, it was selected for use. When various incubation was conducted, no significant differences were observed in the survival rate of B. cereus within 30 min, which was in contrast to the significant decreases observed at 45 and 60 min (p < 0.05). In addition, temperature exerted no significant effects on the survival rate across the entire temperature range. This study demonstrated the feasibility of the lytic, tailed B. cereus-specific phage as a novel recognition element for use in an FME biosensor. Thus, the phage could be placed on the surface of foods for at least 30 min without any significant loss of B. cereus, as a result of the inherent lytic activity of the B. cereus-specific phage as a novel recognition element.

Alterations in Acetylation of Histone H4 Lysine 8 and Trimethylation of Lysine 20 Associated with Lytic Gene Promoters during Kaposi's Sarcoma-Associated Herpesvirus Reactivation

  • Lim, Sora;Cha, Seho;Jang, Jun Hyeong;Yang, Dahye;Choe, Joonho;Seo, Taegun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.189-196
    • /
    • 2017
  • Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with formation of Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. Replication and transcription activator (RTA) genes are expressed upon reactivation of KSHV, which displays a biphasic life cycle consisting of latent and lytic replication phases. RTA protein expression results in KSHV genome amplification and successive viral lytic gene expression. Transcriptional activity of viral lytic genes is regulated through epigenetic modifications. In Raji cells latently infected with Epstein-Barr virus, various modifications, such as acetylation and methylation, have been identified at specific lysine residues in histone H4 during viral reactivation, supporting the theory that expression of specific lytic genes is controlled by histone modification processes. Data obtained from chromatin immunoprecipitation and quantitative real-time PCR analyses revealed alterations in the H4K8ac and H4K20me3 levels at lytic gene promoters during reactivation. Our results indicate that H4K20me3 is associated with the maintenance of latency, while H4K8ac contributes to KSHV reactivation in infected TREx BCBL-1 RTA cells.

Detection and Characterization of a Lytic Pediococcus Bacteriophage from the Fermenting Cucumber Brine

  • Yoon, Sung-Sik;Baprangou-Poueys Roudolphe;Jr Fred Breidt;Fleming Henry P.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.262-270
    • /
    • 2007
  • Of the twelve lytic bacteriophages recovered from five different fermenting cucumber tanks that were inoculated with Pediococcus sp. LA0281, a lytic phage, ${\phi}ps05$, was characterized in the present study. The plaques were mostly clear and round-shaped on the lawn of starter strain, indicating lytic phage. Overall appearance indicated that it belongs to the Siphoviridae family or Bradley's group B1, with a small isometric head and a flexible noncontractile tail with swollen base plate. The average size was found to be 51.2 nm in head diameter and 11.6 nm wide ${\times}$ 129.6 nm long for the tail. The single-step growth kinetics curve showed that the eclipse and the latent period were 29 min and 34 min, respectively, and an average burst size was calculated to be 12 particles per infective center. The optimum proliferating temperature ($35^{\circ}C$) was slightly lower than that of cell growth ($35\;to\;40^{\circ}C$). The structural proteins revealed by SDS-PAGE consisted of one main protein of 33 kDa and three minor proteins of 85, 58, and 52 kDa. The phage genome was a linear double-stranded DNA without cohesive ends. Based on the single and double digestion patterns obtained by EcoRI, HindIII, and SalI, the physical map was constructed. The overall size of the phage genome was estimated to be 24.1 kb. The present report describes the presence of a lytic phage active against a commercial starter culture Pediococcus sp. LA0281 in cucumber fermentation, and a preliminary study characterizes the phage on bacterial successions in the process of starter-added cucumber fermentation.

Metarizium anisopliae (Metschn.) Sorok이 생산하는 Lactobacillus plantarum 용균효소의 분리, 정제 및 특성

  • Ryoo, Ky-Chul;Hahm, Byoung-Kwon;Paik, Un-Wha;Yu, Ju-Hyun;Bai, Dong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.6
    • /
    • pp.678-686
    • /
    • 1996
  • To improve the preservation of Kimchi, we isolated Lactobacillus plantarum lytic enzyme-producing strain from soil, and the enzyme was purified and characterized. From the observation of cultural and morpho- logical characteristics, the isolated strain was identified as Metarrisium anisopliae (Metschn.) Sorok. The enzyme was purified to 75-folds with 40% yields through affinity adsorption and CM-Sephadex C-50 column chromatog- raphy. The optimum pH and temperature for lytic activity are 4.0 and 40$\circ$C, respectively, and the enzyme acitvity is stable between pH 3.0 and 9.0, and up to 50$\circ$C. The enzyme is a monomeric protein with molecular weight of 40,000 daltons by SDS-PAGE and gel filtration. The enzyme is endopeptidase which breaks the peptide linkage of Lactobacillus plantarum peptidoglycan. The lytic action spectra confirmed that Leuconostoc mesenteroides, a useful strain for the fermentation of Kimchi, is not lysed by the enzyme. The enzyme activity is inhibited by N-bromosuccinimide (NBS), which probably indicates the involvement of tryptophan residue in active site of the enzyme, and also inhibited by Ag$^{+}$. The amino acid composition analysis showed that the enzyme contains more acidic amino acids than basic ones, and composition of alanine, glycine, proline and tyrosines was very high.

  • PDF

Isolation and Characterization of a Lytic and Highly Specific Phage against Yersinia enterocolitica as a Novel Biocontrol Agent

  • Gwak, Kyoung Min;Choi, In Young;Lee, Jinyoung;Oh, Jun-Hyun;Park, Mi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1946-1954
    • /
    • 2018
  • The aim of this study was to isolate and characterize a lytic Yersinia enterocolitica-specific phage (KFS-YE) as a biocontrol agent. KFS-YE was isolated and purified with the final concentration of ($11.72{\pm}0.03$) log PFU/ml from poultry. As observed by transmission electron microscopy, KFS-YE consisted of an icosahedral head and a contractile tail, and was classified in the Myoviridae family. KFS-YE showed excellent narrow specificity against Y. enterocolitica only. Its lytic activity was stable at wide ranges of pH (4-11) and temperature ($4-50^{\circ}C$). The latent period and burst size of KFS-YE were determined to be 45 min and 38 PFU/cell, respectively. KFS-YE showed relatively robust storage stability at -20, 4, and $22^{\circ}C$ for 40 weeks. KFS-YE demonstrated a bactericidal effect in vitro against Y. enterocolitica and provided excellent efficiency with a multiplicity of infection as low as 0.01. This study demonstrated the excellent specificity, stability, and efficacy of KFS-YE as a novel biocontrol agent. KFS-YE may be employed as a practical and promising biocontrol agent against Y. enterocolitica in food.

Enzyme Profiles of Alga-Lytic Bacterial Strain AK-13 Related with Elimination of Cyanobacterium Anabaena cylindrica

  • Kim, Jeong-Dong;Han, Myung-Soo
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.1
    • /
    • pp.184-191
    • /
    • 2004
  • To investigate bacteria with algalytic activities against Anabaena cylindrica when water blooming occurs and to study enzyme profiles associated with alga-lytic activity, various bacterial strains were isolated from surface waters and sediments in eutrophic lakes or reservoirs in Korea. Among 178 isolates, only nine isolates exhibited lytic abilities against A cylindrica on the agar plates, and then the isolate AK-13 was selected as the strongest in lysing the cyanobacterium A. cytindrica. The strain AK-13 was characterized and identified as Sinorhizobium sp. based on fatty acid methyl ether profiles and 16S rDNA sequence. According to the results of the enzyme assays, in the strain An-13 of Sinorhizobium sp., alginase, amylase, proteinase (caseinase and gelatinase), carboxymethyl-cellulase (CMCase), laminarinase, and lipase was produced, namely CMCase, laminarinase and protease were highly active. None of glycosidase was produced. Therefore, enzyme systems of Sinorhizobium sp. AK-13 were very complex to degrade cell walls of A. cylindrica. The peptidoglycans of A. cylindrica mat be hydrolyzed and metabolized to a range of easily utilizable monosaccharides or other low molecular weight organic substances by Sinorhizobium sp. AK-13.

Isolation of the Microbes Having Cyanobacteria Lytic Activity from Blooming Reservoirs (수화발생 저수지로부터 남조류 분해능을 가지는 미생물의 분리)

  • 신규철;한명수;최영길
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.1
    • /
    • pp.20-24
    • /
    • 2002
  • We have from water samples of Kwalim, Dochang, and Mulwang reservoirs in Kyonggi-Do, where cyanobacteria blooming occurred. Isolated microbes which have lytic activity for cyanobacteria. Water samples were smeared on the Anabaena cylindrica lawn and incubated in light chamber at $28^\circ{C}$, under 3000 lux for 13 days. A fungus having cyanobacterial lytic activity was isolated from the samples of Dochang reservoir. The isolate was identified as Cryptococcus laurentii by Vitek system. From the culture of the isolate, four major extracellular protein bands (29, 35.2, 40.9, 51.1 kDa) have been detected and the 29 kDa protein band was more thickly appeared in the culture with cyanobacteria.