Browse > Article
http://dx.doi.org/10.4014/jmb.1607.07032

Alterations in Acetylation of Histone H4 Lysine 8 and Trimethylation of Lysine 20 Associated with Lytic Gene Promoters during Kaposi's Sarcoma-Associated Herpesvirus Reactivation  

Lim, Sora (Department of Life Science, Dongguk University-Seoul)
Cha, Seho (Department of Life Science, Dongguk University-Seoul)
Jang, Jun Hyeong (Department of Life Science, Dongguk University-Seoul)
Yang, Dahye (Department of Life Science, Dongguk University-Seoul)
Choe, Joonho (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
Seo, Taegun (Department of Life Science, Dongguk University-Seoul)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.1, 2017 , pp. 189-196 More about this Journal
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with formation of Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. Replication and transcription activator (RTA) genes are expressed upon reactivation of KSHV, which displays a biphasic life cycle consisting of latent and lytic replication phases. RTA protein expression results in KSHV genome amplification and successive viral lytic gene expression. Transcriptional activity of viral lytic genes is regulated through epigenetic modifications. In Raji cells latently infected with Epstein-Barr virus, various modifications, such as acetylation and methylation, have been identified at specific lysine residues in histone H4 during viral reactivation, supporting the theory that expression of specific lytic genes is controlled by histone modification processes. Data obtained from chromatin immunoprecipitation and quantitative real-time PCR analyses revealed alterations in the H4K8ac and H4K20me3 levels at lytic gene promoters during reactivation. Our results indicate that H4K20me3 is associated with the maintenance of latency, while H4K8ac contributes to KSHV reactivation in infected TREx BCBL-1 RTA cells.
Keywords
Kaposi's sarcoma-associated herpesvirus; histone modification; histone H4 lysine 8 acetylation; histone H4 lysine 20 trimethylation; viral reactivation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang Y, Li H, Chan MY, Zhu FX, Lukac DM, Yuan Y. 2004. Kaposi's sarcoma-associated herpesvirus ori-lyt-dependent DNA replication: cis-acting requirements for replication and ori-lyt-associated RNA transcription. J. Virol. 78: 8615-8629.   DOI
2 Kawase H, Okuwaki M, Miyaji M, Ohba R, Handa H, Ishimi Y, et al. 1996. NAP-1 is a functional homologue of TAF-I that is required for replication and transcription of the adenovirus genome in a chromatin-like structure. Genes Cells 1: 1045-1056.   DOI
3 Shikama N, Chan HM, Krstic-Demonacos M, Smith L, Lee CW, Cairns W, La Thangue NB. 2000. Funct ional interact ion between nucleosome assembly proteins and p300/CREB binding protein family coactivators. Mol. Cell. Biol. 20: 8933-8943.   DOI
4 Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G, et al. 2004. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev. 18: 1251-1262.   DOI
5 Berger SL. 2007. The complex language of chromatin regulation during transcription. Nature 447: 407-412.   DOI
6 Bartova E, Krejci J, Harnicarova A, Galiova G, Kozubek S. 2008. Histone modifications and nuclear architecture: a review. J. Histochem. Cytochem. 56: 711-721.   DOI
7 ENCODE Project Consortium. 2007. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447: 799-816.   DOI
8 Kouzarides T. 2007. Chromatin modifications and their function. Cell 128: 693-705.   DOI
9 Probst AV, Dunleavy E, Almouzni G. 2009. Epigenetic inheritance during the cell cycle. Nat. Rev. Mol. Cell Biol. 10: 192-206.   DOI
10 Ruthenburg AJ, Li H, Patel DJ, Allis CD. 2007. Multivalent engagement of chromatin modifications by linked binding modules. Nat. Rev. Mol. Cell Biol. 8: 983-994.   DOI
11 Feinberg AP, Tycko B. 2004. Timeline - The history of cancer epigenetics. Nat. Rev. Cancer 4: 143-153.   DOI
12 Jenuwein T, Allis CD. 2001. Translating the histone code. Science 293: 1074-1080.   DOI
13 Koch CM, Andrews RM, Flicek P, Dillon SC, Karaoz U, Clelland GK, et al. 2007. The landscape of histone modifications across 1% of the human genome in five human cell lines. Genome Res. 17: 691-707.   DOI
14 Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, et al. 2007. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39: 311-318.   DOI
15 Neipel F, Fleckenstein B. 1999. The role of HHV-8 in Kaposi's sarcoma. Semin. Cancer Biol. 9: 151-164.   DOI
16 Edmunds JW, Mahadevan LC, Clayton AL. 2008. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J. 27: 406-420.   DOI
17 Damania B. 2004. Oncogenic gamma-herpesviruses: comparison of viral proteins involved in tumorigenesis. Nat. Rev. Microbiol. 2: 656-668.   DOI
18 Means RE, Lang SM, Jung JU. 2007. Human gammaherpesvirus immune evasion strategies, Chapter 31. In Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K (eds.). Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. Cambridge University Press, Cambridge.
19 Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM. 1995. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N. Engl. J. Med. 332: 1186-1191.   DOI
20 Gessain A, Sudaka A, Briere J, Fouchard N, Nicola MA, Rio B, et al. 1996. Kaposi sarcoma-associated herpes-like virus (human herpesvirus type 8) DNA sequences in multicentric Castleman's disease: is there any relevant association in nonhuman immunodeficiency virus-infected patients? Blood 87: 414-416.
21 Dourmishev LA, Dourmishev AL, Palmeri D, Schwartz RA, Lukac DM. 2003. Molecular genetics of Kaposi's sarcomaassociated herpesvirus (human herpesvirus 8) epidemiology and pathogenesis. Microbiol. Mol. Biol. Rev. 67: 175-212.   DOI
22 Nelson JD, Denisenko O, Bomsztyk K. 2006. Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat. Protoc. 1: 179-185.   DOI
23 Mansouri S, Wang S, Frappier L. 2013. A role for the nucleosome assembly proteins TAF-I ${\beta}$ and N AP1 in t he activation of BZLF1 expression and Epstein-Barr virus reactivation. PLoS One 8: e63802.   DOI
24 Steger DJ, Lefterova MI, Ying L, Stonestrom AJ, Schupp M, Zhuo D, et al. 2008. DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol. Cell. Biol. 28: 2825-2839.   DOI
25 Murata T, Kondo Y, Sugimoto A, Kawashima D, Saito S, Isomura H, et al. 2012. Epigenetic histone modification of Epstein-Barr virus BZLF1 promoter during latency and reactivation in Raji cells. J. Virol. 86: 4752-4761.   DOI
26 Schumann S, Jackson BR, Baquero-Perez B, Whitehouse A. 2013. Kaposi's sarcoma-associated herpesvirus ORF57 protein: exploiting all stages of viral mRNA processing. Viruses 5: 1901-1923.   DOI
27 Deng HY, Young A, Sun R. 2000. Auto-activation of the rta gene of human herpesvirus-8 Kaposi's sarcoma-associated herpesvirus. J. Gen. Virol. 81: 3043-3048.   DOI
28 Song MJ, Li X, Brown HJ, Sun R. 2002. Characterization of interactions between RTA and the promoter of polyadenylated nuclear RNA in Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8. J. Virol. 76: 5000-5013.   DOI
29 AuCoin DP, Colletti KS, Xu YY, Cei SA, Pari GS. 2002. Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) contains two functional lytic origins of DNA replication. J. Virol. 76: 7890-7896.   DOI
30 Lin CL, Li H, Wang Y, Zhu FX, Kudchodkar S, Yuan Y. 2003. Kaposi's sarcoma-associated herpesvirus lytic origin (oti-Lyt)-dependent DNA replication: identification of the oti-Lyt and association of K8 bZip protein with the origin. J. Virol. 77: 5578-5588.   DOI
31 Renne R, Zhong W, Herndier B, McGrath M, Abbey N, Kedes D, Ganem D. 1996. Lytic growth of Kaposi's sarcomaassociated herpesvirus (human herpesvirus 8) in culture. Nat. Med. 2: 342-346.   DOI
32 Mesri EA, Cesarman E, Boshoff C. 2010. Kaposi's sarcoma and its associated herpesvirus. Nat. Rev. Cancer 10: 707-719.   DOI
33 Jenner RG, Alba MM, Boshoff C, Kellam P. 2001. Kaposi's sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J. Virol. 75: 891-902.   DOI
34 Sun R, Lin SF, Staskus K, Gradoville L, Grogan E, Haase A, Miller G. 1999. Kinetics of Kaposi's sarcoma-associated herpesvirus gene expression. J. Virol. 73: 2232-2242.
35 Guito J, Lukac DM. 2012. KSHV Rta promoter specification and viral reactivation. Front. Microbiol. 3: 30.
36 Sun R, Lin SF, Gradoville L, Yuan Y, Zhu F, Miller G. 1998. A viral gene that activates lytic cycle expression of Kaposi's sarcoma-associated herpesvirus. Proc. Natl. Acad. Sci. USA 95: 10866-10871.   DOI
37 Bernst ein BE, Meissner A, Lander ES. 2007. The mammalian epigenome. Cell 128: 669-681.   DOI
38 Ballestas ME, Chatis PA, Kaye KM. 1999. Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284: 641-644.   DOI
39 Lu F, Zhou J, Wiedmer A, Madden K, Yuan Y, Lieberman PM. 2003. Chromatin remodeling of the Kaposi's sarcomaassociated herpesvirus ORF50 promoter correlates with reactivation from latency. J. Virol. 77: 11425-11435.   DOI
40 Xie J, Ajibade AO, Ye F, Kuhne K, Gao SJ. 2008. Reactivation of Kaposi's sarcoma-associated herpesvirus from latency requires MEK/ERK, JNK and p38 multiple mitogen-activated protein kinase pathways. Virology 371: 139-154.   DOI