Browse > Article

Detection and Characterization of a Lytic Pediococcus Bacteriophage from the Fermenting Cucumber Brine  

Yoon, Sung-Sik (Institute of Functional Biomaterials and Biotechnology, Yonsei University)
Baprangou-Poueys Roudolphe (USDA/ARS, Department of Food Science, North Carolina State University)
Jr Fred Breidt (USDA/ARS, Department of Food Science, North Carolina State University)
Fleming Henry P. (USDA/ARS, Department of Food Science, North Carolina State University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.2, 2007 , pp. 262-270 More about this Journal
Abstract
Of the twelve lytic bacteriophages recovered from five different fermenting cucumber tanks that were inoculated with Pediococcus sp. LA0281, a lytic phage, ${\phi}ps05$, was characterized in the present study. The plaques were mostly clear and round-shaped on the lawn of starter strain, indicating lytic phage. Overall appearance indicated that it belongs to the Siphoviridae family or Bradley's group B1, with a small isometric head and a flexible noncontractile tail with swollen base plate. The average size was found to be 51.2 nm in head diameter and 11.6 nm wide ${\times}$ 129.6 nm long for the tail. The single-step growth kinetics curve showed that the eclipse and the latent period were 29 min and 34 min, respectively, and an average burst size was calculated to be 12 particles per infective center. The optimum proliferating temperature ($35^{\circ}C$) was slightly lower than that of cell growth ($35\;to\;40^{\circ}C$). The structural proteins revealed by SDS-PAGE consisted of one main protein of 33 kDa and three minor proteins of 85, 58, and 52 kDa. The phage genome was a linear double-stranded DNA without cohesive ends. Based on the single and double digestion patterns obtained by EcoRI, HindIII, and SalI, the physical map was constructed. The overall size of the phage genome was estimated to be 24.1 kb. The present report describes the presence of a lytic phage active against a commercial starter culture Pediococcus sp. LA0281 in cucumber fermentation, and a preliminary study characterizes the phage on bacterial successions in the process of starter-added cucumber fermentation.
Keywords
Pediococcus bacteriophage; lytic; detection; characterization; cucumber;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 6  (Related Records In Web of Science)
연도 인용수 순위
1 Ackermann, H.-W. 1996. Frequency of morphological phage descriptions in 1995. Arch. Virol. 141: 209-218   DOI   ScienceOn
2 Bruttin, A., F. Desiere, N. d'Amico, J. P. Guerin, J. Sidoti, B. Huni, S. Lucchini, and B. Brüssow. 1997. Molecular ecology of Streptococcus thermophilus bacteriophage infection in a cheese factory. Appl. Environ. Microbiol. 63: 3144-3150
3 Caldwell, S. L., D. J. McMahon, and J. R. Broadbent. 1999. Characterization of three Pediococcus acidilactici temperate bacteriophage, p. F13. In: Abstract of 6th Symposium on Lactic Acid Bacteria. Veldhoven, The Netherlands, September 19-23
4 Fleming, H. P., R. F. McFeeters, M. A. Daeschel, E. G. Humphries, and R. L. Thompson. 1988. Fermentation of cucumbers in anaerobic tanks. J. Food Sci. 53: 127- 133   DOI
5 Kwon, D. Y., M. S. Koo, C. R. Ryoo, C. H. Kang, K. H. Min, and W. J. Kim. 2002. Bacteriocin produced by Pediococcus sp. in kimchi and its characteristics. J. Microbiol. Biotechnol. 12: 96-105
6 Lawrence, R. C. 1978. Action of bacteriophage on lactic acid bacteria: Consequences and protection. NZ J. Dairy Sci. Technol. 13: 129-136
7 Matthews, R. E. F. 1982. Classification and nomenclature of viruses. Fourth report of the international committee on taxonomy of viruses. Intervirology 17: 1-10
8 Neve, H., U. Krusch, and M. Teuber. 1989. Classification of virulent bacteriophages of Streptococcus salivarius subsp. thermophilus isolated from yoghurt and Swiss-type cheese. Appl. Microbiol. Biotechnol. 30: 624-629
9 Sambook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecualr Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Habor, N. Y
10 Santos, R., G. Vieira, M. A. Santos, and H. Paveia. 1996. Characterization of temperate bacteriophages of Leuconostoc oenos and evidence for two prophage attachment sites in the genome of starter strain PSU-1. J. Appl. Bacteriol. 81: 383- 392
11 Terzaghi, B. E. and W. E. Sandine. 1975. Improved medium for lactic streptococci and their bacteriophages. Appl. Environ. Microbiol. 29: 807-823
12 Valyasevi, R., W. E. Sandine, and B. L. Geller. 1990. The bacteriophage kh receptor of Lactococcus lactis ssp. cremoris KH is the rhamnose of the extracellular wall polysaccharide. Appl. Environ. Microbiol. 56: 1882-1889
13 Reddy, M. S. 1974. Development of cultural techniques for the study of Streptococcus thermophilus and Lactobacillus bacteriophages. Ph.D. Thesis, Iowa State University, Ames
14 Gravie, E. I. 1986. Genus Pediococcus, pp. 1075-1079. In Sneath, P. H., N. S. Mair, and J.G. Holt (eds.). Bergey's Manual of Systematic Bacteriology, Vol. 2. Williams & Wilkins, NY
15 Yoon, S. S., R. Barrangou-Poueys, F. Breidt Jr., T. R. Klaenhammer, and H. P. Fleming. 2002. Isolation and characterization of bacteriophages from fermenting sauerkraut. Appl. Environ. Microbiol. 68: 973-976   DOI   ScienceOn
16 Doermann, A. H. 1952. The intracellular growth of bacteriophage. I. Liberation of intracellular bacteriophage T4 by premature lysis with another phage or with cyanide. J. Gen. Microbiol. 35: 645-650
17 Yamamoto, K. R., B. M. Alberts, R. Benzinger, L. Lawhorne, and G. Treiber. 1970. Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology 40: 734-739   DOI   ScienceOn
18 Bradley, D. E. 1967. Ultrastructure of bacteriophages and bacteriocins. Bacteriol. Rev. 31: 230-314
19 Ellis, E. L. and M. Delbrück. 1939. The growth of bacteriophage. J. Gen. Physiol. 22: 365-384   DOI
20 Fleming, H. P., K. H. Kyung, and F. Breidt. 1995. Vegetative fermentation, pp. 631-661. In Reed, G. and T. W. Nagodawithana (eds.), Biotechnolgy, Vol. 9, 2nd Ed. VCH Publishing Co., Germany
21 Sechaud, L., P.-J. Cluzel, M. Rousseau, A. Blaumgartner, and J.-P. Accolas. 1988. Bacteriophages of lactobacilli. Biochimie 70: 401-410   DOI   ScienceOn
22 Adams, M. H. 1959. Bacteriophages, pp. 27-34. Interscience Publishers Inc., New York
23 Jarvis, A. W. 1989. Bacteriophages of lactic acid bacteria. J. Dairy Sci. 72: 3406-3428   DOI
24 Anderson, R. E., M. A. Daeschel, and C. E. Ericksson. 1988. Controlled lactic acid fermentation of vegetables, pp. 855- 868. In: Proceedings of 8th International Biotechnology Symposium, Paris, France
25 Uchida, K. and C. Kanabe. 1993. Occurrence of bacteriophages lytic for Pediococcus halophilus, a halophilic lactic-acid bacterium, in soy-sauce fermentation. J. Gen. Appl. Microbiol. 39: 429-437   DOI   ScienceOn
26 Forsman, P. and T. Alatossava. 1991. Genetic variation of Lactobacillus delbrueckii subsp. lactis bacteriophages isolated from cheese precessing plants in Finland. Appl. Environ. Microbiol. 57: 1805-1812
27 Quiberoni, A. and J. A Reinheimer. 1998. Physicochemical characterization of phage adsorption to Lactobacillus helveticus ATCC 15807 cells. J. Appl. Microbiol. 85: 762-768   DOI   ScienceOn
28 Fleming, H. P. 1984. Developments in cucumber fermentation. J. Chem. Tech. Biotechnol. 34B: 241-251
29 Foschino, R., F. Perrone, and A. Galli. 1995. Characterization of two virulent Lactobacillus fermentum bacteriophages isolated from sour dough. J. Appl. Bacteriol. 79: 677- 683   DOI
30 Murphy, F. A., C. M. Fauquet, D. H. L. Bishop, S. A. Ghabrial, A. W. Jarvis, G. M. Martelli, M. A. Mayo, and M. D. Summers (eds.). 1995. Virus Taxonomy: Classification and nomenclature of Viruses. Springer, Vienna, Austria
31 Kim, S. Y., Y. M. Lee, S. Y. Lee, Y. S. Lee, J. H. Kim, C. Ahn, B. C. Kang, and G. E. Ji. 2001. Synergistie effect of citric acid and pediocin K1, a bacteriocin produced by Pediococcus sp. K1, on inhibition of Listeria monocytogenes. J. Microbiol. Biotechnol. 11: 831-837
32 Manchester, L. N. 1997. Characterization of bacteriophage from Carnobacterium divergens NCFB 2763 by host specifity and electron microscopy. Lett. Appl. Microbiol. 25: 401-404   DOI   ScienceOn
33 Stiles, M. E. and J. W. Hastings. 1991. Bacteriocin production by lactic acid bacteria: Potential for use in meat preservation. Trends Food Sci. Technol. 2: 247-251   DOI   ScienceOn
34 Black, L. W. 1989. DNA packaging in dsDNA bacteriophages. Annu. Rev. Microbiol. 43: 267-292   DOI   ScienceOn
35 Daeschel, M. A. and H. P. Fleming. 1984. Selection of lactic acid bacteria for use in vegetable fermentations. Food Microbiol. 1: 303-313   DOI
36 Gautier, M., A. Rouault, P. Sommer, and R. Briandet. 1995. Occurrence of Propionibacterium freudenrechii bacteriophages in Swiss cheese. Appl. Environ. Microbiol. 61: 2572-2576
37 Rodriguez, J. M., L. M. Cintas, P. Casaus, M. I. Martinez, A. Suarez, and P. E. Hernandez. 1997. Detection of pediocin PA-1-producing Pediococci by rapid molecular biology techniques. Food Microbiol. 14: 363-371   DOI   ScienceOn
38 Caldwell, S. L., D. J. McMahon, C. J. Oberg, and J. R. Broadbent. 1996. Development and characterization of lactose-positive Pediococcus species for milk fermentations. Appl. Environ. Microbiol. 62: 936-941