• Title/Summary/Keyword: lux operon

Search Result 14, Processing Time 0.023 seconds

Coregulation of lux Genes and Riboflavin Genes in Bioluminescent Bacteria of Photobacterium phosphoreum

  • Sung, Nack-Do;Lee, ChanYong
    • Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.194-199
    • /
    • 2004
  • Investigation of the expression of the riboflavin (rib) genes, which are found immediately downstream of luxG in the lux operon in Photobacterium phosphoreum, provides more information relevant to the evolution of bioluminescence, as well as to the regulation of supply of flavin substrate for bacterial bioluminescence reactions. In order to answer the question of whether or not the transcriptions of lux and rib genes are integrated, a transcriptional termination assay was performed with P. phoxphoreum DNA, containing the possible stem-loop structures, located in the intergenic region of luxF and luxE ($\Omega$$\_$A/), of luxG and ribE ($\Omega$$\_$B/), and downstream of ribA ($\Omega$$\_$c/). The expression of the CAT (Chloram-phenicol Acetyl Transferase) reporter gene was remarkably decreased upon the insertion of the stem-loop structure ($\Omega$$\_$c/) into the strong lux promoter and the reporter gene. However, the insertion of the structure ($\Omega$$\_$B/) into the intergenic region of the lux and the rib genes caused no significant change in expression from the CAT gene. In addition, the single stranded DNA in the same region was protected by the P. phosphoreum mRNA from the Sl nuclease protection assay. These results suggest that lux genes and rib genes are part of the same operon in P. phosphoreum.

Construction of Bioluminescent Escherichia coli from lux Operon and Heat Shock Promoter for the Detection of Toxic Substances (lux Operon과 Heat Shock Promoter 유전자 재조합을 통한 독성물질 탐지용 대장균의 개발)

  • 유승오;이은관;김현숙;정계훈;전억한
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.4
    • /
    • pp.278-285
    • /
    • 1999
  • In order to use heat shock promoter for the detection of toxic substances, dnaK promoter was amplified from E. coli genomic DNA by using a polymerase chain reaction(PCR) followed by sequencing and sub-cloning into the multi-cloning site of the plasmid, pUCD615. The pUCD615 is a broad-host-range vector containing promoterless lux operon originated from V.fischeri. The recombinant plasmid was transfered to E. coli DH5$\alpha$ through electroporation. The recombinant E. coli showed several patterns of bioluminescent responses to ethanol stress. The bioluminescent E. coli also showed responses to other toxic substances including FeK3(CN)6, CdCl2, p-nitrophenol and HgCl2. The increases of RLU(Relative Light Unit) were observed at 100ppm of FeK3(CN)6, 10ppm and 100ppm and 100ppm of CdCl2, 1ppm of 10ppm of p-nitrophenol and at 1ppm of HgCl2.

  • PDF

Genotoxicity Assay Using Chromosomally-Integrated Bacterial recA::Lux

  • Min, Ji-Ho;Gu, Man-Bock
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.99-103
    • /
    • 2003
  • An Escherichia coli strain containing the recA promoter that fused to the luxCDABE operon originating from Photorhabdus luminescens was shown to respond sensitively to genotoxic stresses. Two different recombinant bacteria, one (DPDI 657) harboring a plasmid with the recA promoter that fused to the luxCDABE operon, and the other (DPD1710) containing a chromosomally-integrated recA promoter that fused with luxCDABE, were compared and it was found that the sensitivity of 'the two strains was significantly different in terms of their bioluminescent level, response time, and the minimum detectable concentration of a chemical causing DNA damaging stress. DPDI 710, with a chromosomally-integrated single copy, generally led to lower basal luminescence levels, faster responses, increased response ratios, and an enhanced sensitivity to mutagens, when compared to DPD 1657 with a multi-copy plasmid.

The Functions of the Riboflavin Genes in the lux Operon from Photobacterium Species (Photobacterium Species의 lux 오페론에서 발견된 Riboflavin 생합성 유전자들의 기능)

  • 이찬용;임종호
    • Korean Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.173-179
    • /
    • 2002
  • The functions of riboflavin synthesis genes ( ribI,II,III and IV) found immediately downstream of luxG in the lux operon from Photobacterium species were identified using the biochemical and genetical analysis. The ribI-III gene codes for protein corresponding to that coded by the second (riboflavin synthase), third (3,4-dihydroxy 2-butanone 4-phosphate synthase/GTP cyclohydrolase II) and fourth (lumazine synthase) gene, respectively, of Bacillus subtilis rib operon with the respective gene procuct sharing 41-50% amino acid sequence identity. Unexpectedly, the sequence of the ribIV product of Photobacterium phosphoreum does not correspond in sequence to the protein encoded by the fifth rib gene of Bacillus subtilis. Instead the gene (ribIV) codes for a polypeptide similar in sequence to GTP cyclohydrolase II of Escherichia coli and the carboxy terminal domain of the third rib gene from Bacillus subtilis. Complementation of Escherichia coli riboflavin auxotrophs showed that the function of the gene products of ribII and ribIV are DHBP synthase and GTP cyclohydrolase II, respectively. In addition the experiment, showing that increase in thermal stability of riboflavin synthase coded by ribIon coexpression with ribIII, provided indirect evidence that the latter gene codes for lumazine synthase.

Generation and Expression of Amino-Terminal Domain of the Gene Coding for the Lumazine Protein from Photobacterium phosphoreum (발광 박테리아 Photobacterium phosphoreum의 Lumazine Protein을 코드 하는 유전자의 염기 서열 분석 및 발현)

  • Woo Young-Eun;Kim So-Young;Lee Chan-Yong
    • Korean Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.306-311
    • /
    • 2005
  • In this study, the amino-terminal half truncated lump and the whole lump genes from Photobacterium phosphoreum coding for the lumazine protein were cloned by polymerase chain reaction and expressed in Escherichia coli. To identifiy of the binding site of the ligand or substrate, the amino acid identities from the sequences of the lumazine protein, yellow fluorescent protein, and riboflavin synthase from different organisms were also compared and analyzed.

The Lux Genes and Riboflavin Genes in Bioluminescent System of Photobacterium leiognathi Are under Common Regulation

  • Sung, Nack-Do;Lee, Chan-Yong
    • Journal of Photoscience
    • /
    • v.11 no.1
    • /
    • pp.41-45
    • /
    • 2004
  • The key riboflavin synthesis genes are located immediately downstream of luxG in the lux operon from Photobacterium leiognathi. It is of interest that a site capable of forming a rho-independent terminator does not appear to be present between luxG and ribE in our previous data. These results raise the question of whether the transcription of lux and rib genes is integrated or not. In order to answer the question, in vivo transcriptional assay and Southern blot were examined. These studies demonstrate that neither transcriptional terminator nor promoter site is present in the intergenic region between of lux and rib genes as well as that the riboflavin genes are single copy in a chromosome of Photobacterium leiognathi.

  • PDF

Conditions for Stable light Production of Recombinant Escherichia coli Containing Lux Operon and Sensitivity to Toxic Chemicals (Lux operon을 함유한 유전자 재조합 Escherichia coli의 발광 안정화 조건 및 독성물질에 대한 민감성)

  • 배희경;이상민;정윤철;송방호;신평균
    • KSBB Journal
    • /
    • v.17 no.6
    • /
    • pp.571-576
    • /
    • 2002
  • Recombinant E. coli DH5 ${\alpha}$/pSB311 was made by cloning the genes encoding bacterial luciferase and aldehyde substrate proteins from Photohabdus luminescense, to complement defects of Lumistox, which is normally used in bioassays to monitor toxic substances in water environmental systems. The conditions for stable light production by the recombinant strains were investigated with respect to cell growth stage, cell number, and buffer conditions. The optimum growth stage was a middle-exponential stage with an OD$_{660nm}$ value of 0.6-0.7. ADout 10$^{6}$-10$^{7}$ cells per test tube was optimum for stable light emission. The effect of buffer was not significant if an optimum viable cell number was maintained. The bioluminescence of the recombinant E. coli harboring the lux operon of Photohabdus luminescense was not affected by temperature, while the bioluminescence of Lumistox was temperature sensitive. The recombinant E. coli was more sensitive to heavy metals (Cd, Cu, Hg, Zn) than Lumistox, because it does not require high concentrations of NaCl in the buffer.

Expression of the Genes Involved in the Synthesis of Riboflavin from Photobacterium species of Bioluminescent Marine Bacteria (해양 발광 박테리아 Photobacterium Species의 Riboflavin 생합성에 관여하는 유전자들의 발현)

  • 이찬용
    • Korean Journal of Microbiology
    • /
    • v.36 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • The genes involved in riboflavin synthesis (ribI, II, III, and IV) were found immediately downstream of luxG in the lux operon from Photobacterium species. The single stranded DNA containing the intergenic region of lux genes and rib genes from Photobacterium phosphoreum was fully protected by P. phosphoreum mRNA from the S1 nuclease mapping assay suggesting that a transcriptional terminator was not present in the region. In addition, the levels of riboflavin synthase activity in P. phosphoreum was increased during the development of bacterial bioluminescence in the same fashion as the luciferase and fatty acid reductase activities. Insertion of the Photobacterium leiognathi DNA extending from luxB to ribII, between a strong lux promoter and a reporter gene (chloramphenicol acetyltransferase, CAT) and transferred by conjugation into P. leiognathi, did not affect expression of reporter gene. Moreover the CAT gene was not expressed in an analogous construct missing the lux promoter indicating that a promoter was not present in this region. Based on the data here, it can be concluded that the lux genes and rib genes in Photobacterium species are under common regulation.

  • PDF

Regulatory Characteristics of the Vibrio vulnificus putAP Operon Encoding Proline Dehydrogenase and Proline Permease

  • Lee Jeong-Hyun;Jeong So-Young;Choi Sang-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1285-1291
    • /
    • 2006
  • The proline utilization (put) operon of Vibrio vulnificus consists of the putAP genes encoding a proline dehydrogenase and proline permease. The result of put-lux transcriptional fusion analysis suggests that the V vulnificus putAP operon is not autoregulated by the PutA protein. A putR null mutation decreased proline dehydrogenase activity and the level of the put transcripts, indicating that transcription of putAP is under the positive control of PutR. The deduced amino acid sequence of the putR was similar to those reported from other bacteria with high levels of identity. Chromatin IP and GST pull-down assays revealed that PutR specifically binds to the putAP promoter region in vivo, and interacts with CRP in vitro. Taken together, the results suggested that PutR exerts its effect on putAP expression by directly interacting with CRP bound to the upstream region of P$_{put}$.

Tracing of Some Root Colonizing Pseudomonas in the Rhizosphere Using lux Gene Introduced Bacteria (lux Gene을 도입한 생물적 방제 미생물의 근권 정착과 식물 생장 촉진 효과)

  • 김진우;최옥희;강지효;류충민;정미진;김재원;박창석
    • Korean Journal Plant Pathology
    • /
    • v.14 no.1
    • /
    • pp.13-18
    • /
    • 1998
  • The use of bioluminescence as a sensitive marker for the detection of Pseudomnas sp. in the rhizosphere was investigated. Transposon Tn4431 which contains a promoterless luciferase operon and tetracycline resistant gene was used. This transposon, present on a suicide vector (pUCD623) in E. coli HB101, was mated with spontaneous rifampicin mutant of Pseudomonas fluorescens B16, a plant growth promoting rhizobacteria (PGPR), and then rifampicin and tetracycline resistant survivors were isolated. Twenty tow mutants wer isolated from the conjugants between E. coli HB101 and P. fluorescens B16. One of these, B16::Tn4431 (L22) recombinant which glowed brightly in the dark was selected for analysis. The cucumber seeds inoculated with L22 were grown in moisten two layers of filter paper and nonsterile soil contained in half cut PVC pipe. The roots were removed from the filter paper and PVC pipe, then placed on the 1/2 LB media plates. The plates were incubated at room temperature for 16 hr. L22 could successfully be detected in the rhizoplane by using the ordinary negative camera film (ASA100-400) with 30 minutes exposure under dark condition. The root colonizing ability and the plant growth promoting effect of L22 were not reduced compared to the untreated bacteria and wild type. L22 was superior to will type.

  • PDF