The Functions of the Riboflavin Genes in the lux Operon from Photobacterium Species

Photobacterium Species의 lux 오페론에서 발견된 Riboflavin 생합성 유전자들의 기능

  • 이찬용 (을지의과대학교 자연과학교실) ;
  • 임종호 (을지의과대학교 약리학교실)
  • Published : 2002.09.01

Abstract

The functions of riboflavin synthesis genes ( ribI,II,III and IV) found immediately downstream of luxG in the lux operon from Photobacterium species were identified using the biochemical and genetical analysis. The ribI-III gene codes for protein corresponding to that coded by the second (riboflavin synthase), third (3,4-dihydroxy 2-butanone 4-phosphate synthase/GTP cyclohydrolase II) and fourth (lumazine synthase) gene, respectively, of Bacillus subtilis rib operon with the respective gene procuct sharing 41-50% amino acid sequence identity. Unexpectedly, the sequence of the ribIV product of Photobacterium phosphoreum does not correspond in sequence to the protein encoded by the fifth rib gene of Bacillus subtilis. Instead the gene (ribIV) codes for a polypeptide similar in sequence to GTP cyclohydrolase II of Escherichia coli and the carboxy terminal domain of the third rib gene from Bacillus subtilis. Complementation of Escherichia coli riboflavin auxotrophs showed that the function of the gene products of ribII and ribIV are DHBP synthase and GTP cyclohydrolase II, respectively. In addition the experiment, showing that increase in thermal stability of riboflavin synthase coded by ribIon coexpression with ribIII, provided indirect evidence that the latter gene codes for lumazine synthase.

발광 박테리아인 Photobacterium species의 lux 오페론에서 발견된 riboflavin 생합성에 관여하는 유전자들(ribI,II,III,IV)의 기능을 조사하였다. 대장균에서 이들 유전자가 포함된 재조합 플라스미드를 발현시켰을 때 상당량의riboflavin이 합성되는 것을 확인하였으며, 또한 이들 유전자들(ribI,II,III,IV)의 기능을 riboflavin에 대하여 종속 영양체인 대장균 돌연변이주(BSV 11,18)를 이용한 유전학적인 방법과 생화학적 방법으로 분석한 결과, 이들은 각각 riboflavin synthase, 3,4-dihydroxy-2-butanone 4-phosphate (DHBP) synthase, lumazine synthase, GTP cyclohydrolase II활성도를 갖는 단백질을 코드하는 것으로 밝혀졌다. 이는Photobacterium species의 riboflavin 유전자 체계가 riboflavin 생합성에 관여하는 모든 5개의 유전자들이 한 오페론에 존재하는 Bacillus subtilis와 주요 riboflavin 유전자들이 분리되어 있는 대장균과는 다른, 중간적인 형태를 갖는다는 것을 나타낸다.

Keywords

References

  1. J. Biol. Chem. v.255 Riboflavin synthase complex of Bacillus subtilis; Purifications and properties Bacher, A.;R. Baur;U. Eggers;H. Harders;M.K. Otto;H. Schnepple
  2. Biosynthesis of flavins Chemistry and biochemistry of flavoenzymes Bacher, A.;F. Muller(ed.)
  3. Genetika v.19 Three linkage groups of genes for riboflavin biosynthesis in Escherichia coli Banadrin, S.V.;P.M. Ravinovich;A.I. Stepanov
  4. Mol. Gen. Microbiol. Virusol. v.7 Subcloning and studty of the GTP cyclohydrolase gene of Bacillus subtilis Boretskii, I.;I.E. Drobinskaia;N.V. Batchikova;V.E. Bidnenko;P.M. Rabinovich
  5. Genetika v.12 Investigation of the riboflavin operon of Bacillus subtilis; Determination of the type of regulation by the dominance test for operator constitute and regulator constitute mutations Bresler, S.E.;D.A. Perumov;T.P. Chernik;A.P. Skvortsova
  6. Genetika v.14 Investigation of the operon of riboflavin synthesis in Bacillus subtilis; Study of the operator-constitutive mutants Bresler, S.E.;D.A. Perumov;E.A. Glazunov;T.N. Shevchenko;T.P.Chernik
  7. J. Bacteriol. v.136 Presence in Escherichia coli of deaminase and a reductase involved in biosynthesis of riboflavin Burrows,R.B.;G.M. Brown
  8. J. Biol. Chem. v.250 Purification and properties of guanosine triphosphate cyclohydrolase Ⅱ from Escherichia coli Foor, F.;G.M. Brown
  9. The phamacological basis of therapeutics.(8the ed.) Water Soluble Vitamin Gilman, A.G.
  10. Adv. Microbiol. Physiol. v.26 Biochemistry and physiology of bioluminescent bacteria Hastings, J.W.;C.J. Potrikus;S.C. Gupta;M. Kurfurst;J.C. Makemson https://doi.org/10.1016/S0065-2911(08)60398-7
  11. Bioluminescence in Action Herring, P.J.;Herring(ed.)
  12. J. Biolumin. Chemilumin. v.1 Systematic distribution of biolumunescence in living organisms Herring, P.J. https://doi.org/10.1002/bio.1170010303
  13. Eur. J. Biochem. v.201 The lux genes of the luminous bacterial symbiont, Photobacterium leiognathi, of the ponyfish Lee, C.Y.;R.B. Szittner;E.A. Meighen https://doi.org/10.1111/j.1432-1033.1991.tb16269.x
  14. Biochem. Biophys. Res. Commun. v.186 The lux genes in Photobacterium leiognathi are closely linked with genes corresponding in sequence to riboflavin synthesis genes Lee, C.Y.;E.A. Meighen https://doi.org/10.1016/0006-291X(92)90802-R
  15. Riboflavin synthesis genes are linked with the lux operon of Photobacterium phosphoreum v.176 Lee, C.Y.;D. O'Kane;E.A. Meighen
  16. J. Biol. Chem. v.263 Cloning and expression of the Photobacterium phosphoreum luminescence system demonstrates a unique lux gene organization Mancini, J.A.;M. Boylan;R.R. Soly;A.F. Graham;E.A. Meighen
  17. Annu. Rev. Microbiol. v.42 Enzymes and genes from the lux operons of bioluminescent bacteria Meighen, E.A. https://doi.org/10.1146/annurev.mi.42.100188.001055
  18. Microbiol. Rev. v.55 Molecular biology of bacterial bioluminescence Meighen, E.A.
  19. Dokl. Akad. Nauk. SSSR. v.312 Riboflavin biosynthesis genes of riboflavin synthesis in Bacillus subtilis Mironov, V.N.;M.L. Chikandas;A.S. Kraev;A.I. Stepanov;K.G. Skryaben
  20. J. Bacteriol. v.172 Transcriptional regulation of the lux genes transferred into Vibrio harveyi Miyamoto, C.;E. Meighen;A. Graham https://doi.org/10.1128/jb.172.4.2046-2054.1990
  21. Meth. Enzymol. v.18B The enzymatic synthesis of riboflavin Plaut, G.W.E.;R.A. Harvey
  22. J. Bacteriol. v.174 Biosynthesis of riboflavin: Cloning, sequencing and expression of the gene coding for 3,4-dihydroxy-2-butanone 4-phosphate synthase of Escherichia coli Richter, G.;R. Volk;C. Kreger;H.W. Lahm;U. Rothlisberger;A. Bacher https://doi.org/10.1128/jb.174.12.4050-4056.1992
  23. J. Bacteriol. v.179 Biosynthesis of riboflavin: Characterization of bifunctional deaminase-reductase of Escherichia coli and Bacillus subtilis Rochter, G.;M. Fischer;C. Krieger;S. Eberhardt;H. Luttgen;I. Gerstenschlager;A. Bacher https://doi.org/10.1128/jb.179.6.2022-2028.1997
  24. J. Biol. Chem. v.265 The lumazine synthase and riboflavin synthase complex of Bacillus subtilis Schott, K. R. Landenstein;A. Konig;A. Bacher
  25. Dictionary of microbiology and molecular biology(2nd ed.) Riboflavin Singleton, P.;P.Sainsbury
  26. J. Biol. Chem. v.265 Delineation of the transcriptional boundaries of the lux operon of Vibrio harveyi demonstrates the presence of two new lux genes Swartzman, E.;C. Miyamoto;A. Graham;E. Meighen
  27. Proc. Natl. Acad. Sci. USA v.82 A bacteriophage T7 RNA polymerase-promoter system for controlled exclusive expression of specific genes Tabor, S.;C.C. Richardson https://doi.org/10.1073/pnas.82.4.1074
  28. Mol. Gen. Genet. v.234 Insertational disruption of nusB (ssyB) gene leads to cold sensitive growth of Escherichia coli and supression of the secY24 mutation Taura, T.;C. Ueguchi;K. Shiba;I. Koreaki https://doi.org/10.1007/BF00538702
  29. Genetika v.17 Localization of the genes coding GTP cyclohydrolase Ⅱ and riboflavin synthase on the Escherichia coli K-12 chromosome Tresler, G.E.;G.M. Shavlovskii