• Title/Summary/Keyword: luteolin

Search Result 294, Processing Time 0.035 seconds

Luteolin and luteolin-7-O-glucoside protect against acute liver injury through regulation of inflammatory mediators and antioxidative enzymes in GalN/LPS-induced hepatitic ICR mice

  • Park, Chung Mu;Song, Young-Sun
    • Nutrition Research and Practice
    • /
    • v.13 no.6
    • /
    • pp.473-479
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Anti-inflammatory and antioxidative activities of luteolin and luteolin-7-O-glucoside were compared in galactosamine (GalN)/lipopolysaccharide (LPS)-induced hepatitic ICR mice. MATERIALS/METHODS: Male ICR mice (6 weeks old) were divided into 4 groups: normal control, GalN/LPS, luteolin, and luteolin-7-O-glucoside groups. The latter two groups were administered luteolin or luteolin-7-O-glucoside (50 mg/kg BW) daily by gavage for 3 weeks after which hepatitis was induced by intraperitoneal injection of GalN and LPS (1 g/kg BW and $10{\mu}g/kg\;BW$, respectively). RESULTS: GalN/LPS produced acute hepatic injury by a sharp increase in serum AST, ALT, and $TNF-{\alpha}$ levels, increases that were ameliorated in the experimental groups. In addition, markedly increased expressions of cyclooxygenase (COX)-2 and its transcription factors, nuclear factor $(NF)-{\kappa}B$ and activator protein (AP)-1, were also significantly attenuated in the experimental groups. Compared to luteolin-7-O-glucoside, luteolin more potently ameliorated the levels of inflammatory mediators. Phase II enzymes levels and NF-E2 p45-related factor (Nrf)-2 activation that were decreased by GalN/LPS were increased by luteolin and luteolin-7-O-glucoside administration. In addition, compared to luteolin, luteolin-7-O-glucoside acted as a more potent inducer of changes in phase II enzymes. Liver histopathology results were consistent with the mediator and enzyme results. CONCLUSION: Luteolin and luteolin-7-O-glucoside protect against GalN/LPS-induced hepatotoxicity through the regulation of inflammatory mediators and phase II enzymes.

Neuroprotective Activity of Luteolin Isolated from Lonicera japonica (금은화에서 분리한 luteolin의 신경세포보호 활성)

  • Kim, Eun Seo;Ma, Choong Je
    • Korean Journal of Pharmacognosy
    • /
    • v.53 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • In the previous study, we reported that luteolin isolated from Lonicera japonica methanolic extract had potent neuroprotective activities in neuronal cell death injured by excessive glutamate. In this study, we tried to confirm the neuroprotective activities of luteolin in glutamate injured HT22 cells and establish mechanisms of neuroprotective action of luteolin. We used HT22 cell death injured by glutamate as a bioassay system. Luteolin decreased reactive oxygen species increased by excessive glutamate treatment in HT22 cells. Also, Ca2+ concentration was decreased by luteolin treatment. Luteolin made mitochondrial membrane potential maintain to normal condition. It also increased not only glutathione reductase but also peroxidase to the control level. And it increased amount of glutathione, an endogenous antioxidant. These results suggested that luteolin isolated from L. japonica showed potent neuroprotective activity through the anti-oxidative pathway.

Anti-cancer Effects of Luteolin and Its Novel Mechanism in HepG2 Hepatocarcinoma Cell (루테올린의 간암세포 성장 억제효능 및 새로운 작용기전)

  • Hwang, Jin-Taek;Yang, Hye-Jung
    • KSBB Journal
    • /
    • v.25 no.6
    • /
    • pp.507-512
    • /
    • 2010
  • In this study, we investigated the ability of luteolin, a plant derived flavonoid on hepatocarcinoma cell growth using HepG2 cell culture system. We found that luteolin increased the Smac/DIABLO releases, a mitochondrial protein that potentiates apoptosis. Luteolin also induced either transcriptional activity or expression of PPAR-gamma, a target of cancer growth that PPAR-gamma agonist sensitizes to apoptosis in certain cancer types. To find the possible upstream target molecules of PPAR-gamma activated by luteolin treatment, we used compound C, a specific inhibitor of AMP-activated protein kinase. Pre-treatment of Compound C significantly restored the activation or expression of PPAR-gamma stimulated by luteolin. This result indicated that AMPK signaling might be involved in the activation or expression of PPAR-gamma signaling pathway stimulated by luteolin. Moreover, we also found that luteolin inhibited the insulin-stimulated Akt phosphorylation as well as AICAR, a specific AMPK activator. These results propose that luteolin significantly induces cancer cell death through modulating survival signal pathways such as PPAR-gamma and Akt. AMPK signaling pathway may be an upstream regulator for survival signal pathways such as PPAR-gamma and Akt stimulated by luteolin.

Luteolin and luteolin-7-O-glucoside inhibit lipopolysaccharide-induced inflammatory responses through modulation of NF-${\kappa}B$/AP-1/PI3K-Akt signaling cascades in RAW 264.7 cells

  • Park, Chung Mu;Song, Young-Sun
    • Nutrition Research and Practice
    • /
    • v.7 no.6
    • /
    • pp.423-429
    • /
    • 2013
  • Luteolin is a flavonoid found in abundance in celery, green pepper, and dandelions. Previous studies have shown that luteolin is an anti-inflammatory and anti-oxidative agent. In this study, the anti-inflammatory capacity of luteolin and one of its glycosidic forms, luteolin-7-O-glucoside, were compared and their molecular mechanisms of action were analyzed. In lipopolysaccharide (LPS)-activated RAW 264.7 cells, luteolin more potently inhibited the production of nitric oxide (NO) and prostaglandin E2 as well as the expression of their corresponding enzymes (inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) than luteolin-7-O-glucoside. The molecular mechanisms underlying these effects were investigated to determine whether the inflammatory response was related to the transcription factors, nuclear factor (NF)-${\kappa}B$ and activator protein (AP)-1, or their upstream signaling molecules, mitogen-activated protein kinases (MAPKs) and phosphoinositide 3-kinase (PI3K). Luteolin attenuated the activation of both transcription factors, NF-${\kappa}B$ and AP-1, while luteolin-7-O-glucoside only impeded NF-${\kappa}B$ activation. However, both flavonoids inhibited Akt phosphorylation in a dose-dependent manner. Consequently, luteolin more potently ameliorated LPS-induced inflammation than luteolin-7-O-glucoside, which might be attributed to the differentially activated NF-${\kappa}B$/AP-1/PI3K-Akt pathway in RAW 264.7 cells.

Effects of Luteolin on Fetal Bovine Serum-induced Events in Cultured Rat Vascular Smooth Muscle Cells (소태아혈청으로 유도된 흰쥐 혈관평활근세포의 luteolin 효과)

  • Lim, Yong
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1595-1599
    • /
    • 2012
  • Cell cycle activation and progression in vascular proliferative disease represent potent therapeutic targets. Luteolin, which occurs as glycosylated forms in celery, green pepper, perilla leaf, and camomile tea, has demonstrated antimutagenic, antitumorigenic, antioxidant, and antiinflammatory properties. In this study, we investigated the effect of luteolin on the proliferation of primary cultured rat aortic vascular smooth muscle cells induced by 5% fetal bovine serum. Luteolin at concentrations of 5, 20, and $50{\mu}M$ significantly inhibited this proliferation by 29.6, 50.8, and 83.1%, respectively. The incorporation of $[^3H]$-thymidine into DNA was also inhibited by 25.8, 57.6, and 81.0%, respectively. Flow cytometry analysis of DNA content revealed that FBS-inducible cell cycle progression was blocked by luteolin. Luteolin showed no cytotoxicity in VSMCs in this experimental condition according to WST-1 assays. Luteolin may represent a potential anti-proliferative agent for treatment of angioplasty restenosis and atherosclerosis.

Synergistic Anti-inflammatory Effect of Rosmarinic Acid and Luteolin in Lipopolysaccharide-Stimulated RAW264.7 Macrophage Cells (Rosmarinic acid와 luteolin의 항염증에 대한 상승효과)

  • Cho, Byoung Ok;Yin, Hong Hua;Fang, Chong Zhou;Ha, Hye Ok;Kim, Sang Jun;Jeong, Seung Il;Jang, Seon Il
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.119-125
    • /
    • 2015
  • The aim of this study was to investigate the synergistic anti-inflammatory effect of rosmarinic acid (RA) and luteolin from perilla (Perilla frutescens L.) leaves in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. A combination of RA and luteolin more strongly inhibited the production of nitric oxide (NO), inducible NOS (iNOS), prostaglandin $E_2$ ($PGE_2$), and COX-2 than higher concentrations of RA or luteolin alone in LPS-stimulated RAW264.7 macrophages. The combined RA and luteolin synergistically inhibited the production of pro-inflammatory cytokines, such as tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-6 (IL-6), and interleukin-$1{\beta}$ (IL-$1{\beta}$), in LPS-stimulated RAW264.7 macrophages. Furthermore, combined RA and luteolin more strongly suppressed NF-${\kappa}B$ activation than RA or luteolin alone, by inhibiting the degradation of inhibitor of NF-${\kappa}B(I{\kappa}B)$-${\alpha}$ and nuclear translocation of the p65 subunit of NF-${\kappa}B$ in LPS-stimulated RAW264.7 macrophages. Collectively, these results suggest that RA and luteolin in combination exhibit synergistic effects in suppression of LPS-induced inflammation in RAW264.7 macrophages.

Luteolin Arrests Cell Cycling, Induces Apoptosis and Inhibits the JAK/STAT3 Pathway in Human Cholangiocarcinoma Cells

  • Aneknan, Ploypailin;Kukongviriyapan, Veerapol;Prawan, Auemduan;Kongpetch, Sarinya;Sripa, Banchob;Senggunprai, Laddawan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.5071-5076
    • /
    • 2014
  • Cholangiocarcinoma (CCA) is one of the aggressive cancers with a very poor prognosis. Several efforts have been made to identify and develop new agents for prevention and treatment of this deadly disease. In the present study, we examined the anticancer effect of luteolin on human CCA, KKU-M156 cells. Sulforhodamine B assays showed that luteolin had potent cytotoxicity on CCA cells with IC50 values of $10.5{\pm}5.0$ and $8.7{\pm}3.5{\mu}M$ at 24 and 48 h, respectively. Treatment with luteolin also caused a concentration-dependent decline in colony forming ability. Consistent with growth inhibitory effects, luteolin arrested cell cycle progression at the G2/M phase in a dose-dependent manner as assessed by flow cytometry analysis. Protein expression of cyclin A and Cdc25A was down-regulated after luteolin treatment, supporting the arrest of cells at the G2/M boundary. Besides evident G2/M arrest, luteolin induced apoptosis of KKU-M156 cells, demonstrated by a distinct sub-G1 apoptotic peak and fluorescent dye staining. A decrease in the level of anti-apoptotic Bcl-2 protein was implicated in luteolin-induced apoptosis. We further investigated the effect of luteolin on JAK/STAT3, which is an important pathway involved in the development of CCA. The results showed that interleukin-6 (IL-6)-induced JAK/STAT3 activation in KKU-M156 cells was suppressed by treatment with luteolin. Treatment with a specific JAK inhibitor, AG490, and luteolin diminished IL-6-stimulated CCA cell migration as assessed by wound healing assay. These data revealed anticancer activity of luteolin against CCA so the agent might have potential for CCA prevention and therapy.

The Effect of $Luteolin-7-O-{\beta}-D-Glucuronopyranoside$ on Gastritis and Esophagitis in Rats

  • Min, Young-Sil;Bai, Ki-Lyong;Yim, Sung-Hyuk;Lee, Young-Joo;Song, Hyun-Ju;Kim, Jin-Hak;Ham, In-Hye;Whang, Wan-Kyun;Sohn, Uy-Dong
    • Archives of Pharmacal Research
    • /
    • v.29 no.6
    • /
    • pp.484-489
    • /
    • 2006
  • This Study evaluated the inhibitory action of $luteolin-7-O-{\beta}-D-glucuronopyranoside$, luteolin which was isolated from Salix gilgiana leaves, and omeprazole on reflux esophagitis and gastritis in rats. Reflux esophagitis and gastritis were induced surgically and by the administration of indomethacin, respectively. The intraduodenal administration of $luteolin-7-O-{\beta}-D-glucuronopyranoside$ decreased the ulcer index, injury area, gastric volume and acid output, and increased the gastric pH compared with luteolin. $Luteolin-7-O-{\beta}-D-glucuronopyranoside$ significantly decreased the size of the gastric lesions that had been induced by exposing the gastric mucosa to indomethacin. The malondialdehyde content, which is the end product of lipid peroxidation, was increased significantly after inducing of reflux esophagitis. The malondialdehyde content was decreased by $Luteolin-7-O-{\beta}-D-glucuronopyranoside$ but not luteolin or omeprazole. $Luteolin-7-O-{\beta}-D-glucuronopyranoside$ has a more potent antioxidative effect than luteolin. $Luteolin-7-O-{\beta}-D-glucuronopyranoside$ is a promising drug for the treatment of reflux esophagitis and gastritis.

Sleep Promoting Effect of Luteolin in Mice via Adenosine A1 and A2A Receptors

  • Kim, Tae-Ho;Custodio, Raly James;Cheong, Jae Hoon;Kim, Hee Jin;Jung, Yi-Sook
    • Biomolecules & Therapeutics
    • /
    • v.27 no.6
    • /
    • pp.584-590
    • /
    • 2019
  • Luteolin, a widespread flavonoid, has been known to have neuroprotective activity against various neurologic diseases such as epilepsy, and Alzheimer's disease. However, little information is available regarding the hypnotic effect of luteolin. In this study, we evaluated the hypnotic effect of luteolin and its underlying mechanism. In pentobarbital-induced sleeping mice model, luteolin (1, and 3 mg/kg, p.o.) decreased sleep latency and increased the total sleep time. Through electroencephalogram (EEG) and electromyogram (EMG) recording, we demonstrated that luteolin increased non-rapid eye movement (NREM) sleep time and decreased wake time. To evaluate the underlying mechanism, we examined the effects of various pharmacological antagonists on the hypnotic effect of luteolin. The hypnotic effect of 3 mg/kg of luteolin was not affected by flumazenil, a GABAA receptorbenzodiazepine (GABAAR-BDZ) binding site antagonist, and bicuculine, a GABAAR-GABA binding site antagonist. On the other hand, the hypnotic effect of 3 mg/kg of luteolin was almost completely blocked by caffeine, an antagonist for both adenosine A1 and A2A receptor (A1R and A2AR), 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX), an A1R antagonist, and SCH-58261, an A2AR antagonist. From the binding affinity assay, we have found that luteolin significantly binds to not only A1R but also A2AR with $IC_{50}$ of 1.19, $0.84{\mu}g/kg$, respectively. However, luteolin did not bind to either BDZ-receptor or GABAAR. From these results, it has been suggested that luteolin has hypnotic efficacy through A1R and A2AR binding.

Luteolin Promotes Apoptosis of Endometriotic Cells and Inhibits the Alternative Activation of Endometriosis-Associated Macrophages

  • Woo, Jeong-Hwa;Jang, Dae Sik;Choi, Jung-Hye
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.678-684
    • /
    • 2021
  • Luteolin, a flavonoid present in several fruits, vegetables, nuts, and herbs reportedly exhibits anti-cancer and anti-inflammatory properties. However, the effect of luteolin on endometriosis, a painful condition characterized by the ectopic growth of endometrial tissue and pelvic inflammation, remains elusive. Herein, we observed that luteolin inhibited cell growth and induced apoptosis of 12Z human endometriotic cells by activating caspase-3, -8, and -9. Additionally, luteolin significantly inhibited the expression of key chemokines, C-C motif chemokine ligand 2 (CCL2) and CCL5, required for monocyte/macrophage influx at endometriotic sites. In macrophages stimulated by endometriotic cells, luteolin treatment suppressed the intracellular expression of M2 markers and endometriosis-promoting factors. Collectively, our data suggest that luteolin exerts anti-endometriotic effects by stimulating endometriotic cell apoptosis and hindering the alternative activation of macrophages.