Browse > Article
http://dx.doi.org/10.22889/KJP.2022.53.1.1

Neuroprotective Activity of Luteolin Isolated from Lonicera japonica  

Kim, Eun Seo (Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University)
Ma, Choong Je (Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University)
Publication Information
Korean Journal of Pharmacognosy / v.53, no.1, 2022 , pp. 1-7 More about this Journal
Abstract
In the previous study, we reported that luteolin isolated from Lonicera japonica methanolic extract had potent neuroprotective activities in neuronal cell death injured by excessive glutamate. In this study, we tried to confirm the neuroprotective activities of luteolin in glutamate injured HT22 cells and establish mechanisms of neuroprotective action of luteolin. We used HT22 cell death injured by glutamate as a bioassay system. Luteolin decreased reactive oxygen species increased by excessive glutamate treatment in HT22 cells. Also, Ca2+ concentration was decreased by luteolin treatment. Luteolin made mitochondrial membrane potential maintain to normal condition. It also increased not only glutathione reductase but also peroxidase to the control level. And it increased amount of glutathione, an endogenous antioxidant. These results suggested that luteolin isolated from L. japonica showed potent neuroprotective activity through the anti-oxidative pathway.
Keywords
Lonicera japonica; Luteolin; Neuroprotection; Antioxidant; Alzheimer's disease;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Weon, J. B., Yang, H. J., Lee, B., Yun, B.-R., Ahn, J. H., Lee, H. Y. and Ma, C. J. (2011) Neuroprotective activity of the methanolic extract of Lonicera japonica in glutamate-injured primary rat cortical cells. Pharmacog. Mag. 7: 284-288.   DOI
2 Weon, J. B., Yang, H. J., Lee, B., Yun, B.-R. and Ma, C. J. (2011) Neuroprotective compounds isolated from the methanolic extract of Lonicera japonica. Nat. Prod. Sci. 17: 221-224.
3 Folch, J., Petrov, D., Ettcheto, M., Abad, S., Sanchez-Lopez, E., Garcia, M. L., Olloquequi, J., Beas-Zarate, C., Auladell, C. and Camins, A. (2016) Current research therapeutic strategies for Alzheimer's disease treatment. Neural Plast. Article ID 8501693.
4 Kuhla, B., Haase, C., Flach, K., Luth, H. J., Arendt, T. and Munch, G. (2007) Effect of pseudophosphorylation and cross-linking by lipid peroxidation and advanced glycation end product precursors on tau aggregation and filament formation. J. Biol. Chem. 282: 6984-6991.   DOI
5 Meldrum, B. S. (2002) Concept of activity-induced cell death in epilepsy: historical and contemporary perspectives. Prog. Brain Res. 135: 3-11.   DOI
6 Kerksick, C. and Willoughby, D. (2005) The antioxidant role of glutathione and N-acetyl-cysteine supplements and exercise-induced oxidative stress. J. Int. Sco. Sports Nutr. 2: 38-44.   DOI
7 Qi, L.-W., Chen, C.-Y. and Li, P. (2009) Structural characterization and identification of iridoid glycosides, saponins, phenolic acids and flavonoids in Flos Lonicerae Japonicae by a fast liquid chromatography method with diode-array detection and time-of-flight mass spectrometry. Rapid Comm. Mass Spectrom. 23: 3227-3242.   DOI
8 Chen, C. Y., Kao, C. L. and Liu, C. M. (2018) The cancer prevention, anti-inflammatory and anti-oxidation of bioactive phytochemicals targeting the TLR4 signaling pathway. Int. J. Mol. Sci. 19: 2729.   DOI
9 Jung, Y. S., Weon, J. B., Yang, W. S., Ryu, G. and Ma, C. J. (2018) Neuroprotective effects of Magnoliae Flos extract in mouse hippocampal neuronal cells. Sci. Rep. 8: 9693.   DOI
10 Goodman, Y. and Mattson, M. P. (1994) Selected forms of b-amlyolid precursor protein protect hippocampal neurons against amyloid b-peptide induced oxidative injury. Exp. Neurol. 128: 1-12.   DOI
11 Kim, D. H., Kim, D. W., Jung, B. H., Lee, J. H., Lee, H., Hwang, G. S., Kang, K. S. and Lee, J. W. (2019) Ginsenoside Rb2 suppresses the glutamate-mediated oxidative stress and neuronal cell death in HT22 cells. J. Ginseng Res. 43: 326-334.   DOI
12 Song, J. H., Shin, M.-S., Hwang, G. S., Oh, S. T., Hwang, J. J. and Kang, K. S. (2018) Chebulinic acid attenuates glutamate-induced HT22 cell death by inhibiting oxidative stress, calcium influx and MAPKs phosphorylation. Bioorg. Med. Chem. Let. 28: 249-253.   DOI
13 Ishige, K., Schubert, D. and Sagara, Y. (2001) Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic. Biol. Med. 30: 433-446.   DOI
14 Tobaben, S., Grohm, J., Seiler, A., Conrad, M., Plesnila, N. and Culmsee, C. (2011) Bid-mediated mitochondrial damage is a key mechanism in glutamate-induced oxidative stress and AIF-dependent cell death in immortalized HT-22 hippocampal neurons. Cell Death Differ. 18: 282-292.   DOI
15 Park, J. S., Park, J. H. and Kim, K. Y. (2019) Neuroprotective effects of myristargenol A against glutamate-induced apoptotic HT22 cell death. RSC Adv. 9: 31247-31254.   DOI
16 Lopez-Lazaro, M. (2009) Distribution and biological activities of flavonoid luteolin. Mini Rev. Med. Chem. 9: 31-59.   DOI
17 Fiest, K. M., Roberts, J. I., Maxwell, C. J., Hogan, D. B., Smith, E. E., Frolkis, A. F., Cohen, A., Kirk, A., Pearson, D., Pringsheim, T., Venegas-Torres, A. and Jette, N. (2016) The prevalence and incidence of dementia due to Alzheimer's disease: a systematic review and meta-analysis. Can. J. Neurol. Sci. 43: S51-S82.
18 Aisen, P. S., Gauthier, S., Ferris, S. H., Saumier, D., Haine, D., Garceau, D., Duong, A., Suhy, J., Oh, J., Lau, W. C. and Sampalis, J. (2011) Tramiprosate in mild-to-moderate Alzheimer's disease - a randomized, double-blind, placebo-controlled, multi-centre study (the Alphase Study). Arch. Med. Sci. 7: 102-111.
19 Kim, M. S., Seo, J. Y., Oh, J., Jang, Y. K., Lee, C. H. and Kim, J. S. (2017) Neuroprotective effect of halophyte Salicornia herbacea L. is mediated by activation of heme oxygenase-1 in mouse hippocampal HT22 cells. J. Med. Food 20: 140-151.   DOI
20 Yan, M. H., Wang, X. L. and Zhu, X. W. (2013) Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Rad. Biol. Med. 62: 90-101.   DOI
21 Lin, M. T. and Beal, M. F. (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443: 787-795.   DOI
22 Srivastava, S., Sithu, S. D., Vladykovskaya, E., Haberzettl, P., Hoetker, D. J., Siddiqui, M. A., Conklin, D. J., D'Souza, S. E. and Bhatnagar, A. (2011) Oral exposure to acrolein exacerbates atherosclerosis in apoE-null mice. Atherosclerosis 215: 301-308.   DOI
23 Bradley, M. A., Markesbery, W. R. and Lovell, M. A. (2010) Increased levels of 4-hydroxynonenal and acrolein in the brain in preclinical Alzheimer disease. Free Rad. Biol. Med. 48: 1570-1576.   DOI
24 Tan, S., Sagara, Y., Liu, Y., Maher, P. and Schubert, D. (1998) The regulation of reactive oxygen species production during programmed cell death. J. Cell Biol. 141: 1423-1432.   DOI
25 Zheng, Li. (2021) Luteolin stimulates proliferation and inhibits late differentiation of primary rat calvarial osteoblast induced by high-dose dexamethasone via Sema3A /NRP1/Pleixin A1. Curr. Pharm. Biotechnol. 22: 1538-1545.   DOI
26 Nabavi, S. F., Braidy, N., Grotzi, O., Sobarzo-Sanchez, E., Daglia, M., Skalicka-Wonziak, K. and Nabavi, S. M. (2015) Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Res. Bull. 119: 1-11.   DOI
27 Sultana, R. and Butterfield, D. A. (2010) Role of oxidative stress in the progression of Alzheimer's disease. J. Alzheimer's Dis. 19: 341-353.   DOI
28 Carrano, A., Hoozemans, J. J. M., van der Vies, S. M., Rozemuller, A. J. M., van Horssen, J. and de Vries, H. E. (2011) Amyloid beta induces oxidative stress-mediated blood-brain barrier changes in capillary amyloid angiopathy. Antioxid. Redox. Signal 15: 1167-1178.   DOI
29 Helmut, S. (1999) Glutathione and its role in cellular functions. Free Radic. Biol. Med. 27: 916-921.   DOI
30 Mattson, M. P. (2004) Pathways towards and away from Alzheimer's disease. Nature 430: 631-639.   DOI
31 Seidler, N. W. and Squire, T. J. (2005) A beta-polyacrolein aggregates: novel mechanism of plastic formation in senile plaques. Biochem. Biophys. Res. Comm. 335: 501-504.   DOI