• Title/Summary/Keyword: lunar

Search Result 534, Processing Time 0.023 seconds

A STUDY ON THE ARMILLARY SPHERE OF TONGCHEON-UI DESCRIBED BY HONG DAE-YONG (홍대용 통천의의 혼천의 연구)

  • MIHN, BYEONG-HEE;YUN, YONG-HYUN;KIM, SANG HYUK;KI, HO CHUL
    • Publications of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.79-95
    • /
    • 2021
  • This study aims to develop a restoration model of an armillary sphere of Tongcheon-ui (Pan-celestial Armillary Sphere) by referring to the records of Damheonseo (Hong Dae-Yong Anthology) and the artifact of an armillary sphere in the Korean Christian Museum of Soongsil University. Between 1760 and 1762, Hong, Dae-Yong (1731-1783) built Tongcheon-ui, with Na, Kyung-Jeok (1690-1762) designing the basic structure and Ann, Cheo-In (1710-1787) completing the assembly. The model in this study is a spherical body with a diameter of 510 mm. Tongcheon-ui operates the armillary sphere by transmitting the rotational power from the lantern clock. The armillary sphere is constructed in the fashion of a two-layer sphere: the outer one is Yukhab-ui that is fixed; and the inner one, Samsin-ui, is rotated around the polar axis. In the equatorial ring possessed by Samsin-ui, an ecliptic ring and a lunar-path ring are successively fixed and are tilted by 23.5° and 28.5° over the equatorial ring, respectively. A solar miniature attached to a 365-toothed inner gear on the ecliptic ring reproduces the annual motion of the Sun. A lunar miniature installed on a 114-toothed inner gear of the lunar-path ring can also replay the moon's orbital motion and phase change. By the set of 'a ratchet gear, a shaft and a spur gear' installed in the solstice-colure double-ring, the inner gears in the ecliptic ring and lunar-path ring can be rotated in the opposite direction to the rotation of Samsin-ui and then the solar and lunar miniatures can simulate their revolution over the period of a year and a month, respectively. In order to indicate the change of the moon phases, 27 pins were arranged in a uniform circle around the lunar-path ring, and the 29-toothed wheel is fixed under the solar miniature. At the center of the armillary sphere, an earth plate representing a world map is fixed horizontally. Tongcheon-ui is the armillary sphere clock developed by Confucian scholars in the late Joseon Dynasty, and the technical level at which astronomical clocks could be produced at the time is of a high standard.

Implementation of Deferred NAK Mode Simulator for Large-Volume Telemetry Data Transmission in Deep Space Communication Systems (심우주 통신 시스템에서 대용량 Telemetry 데이터 전송을 위한 Deferred NAK Mode 시뮬레이터 구현)

  • Hong, Hee-Jin;Lee, Ju-Byung;Yoon, Dong-Weon;Hyun, Kwang-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.69-75
    • /
    • 2011
  • As part of its space development program, Korea has a plan for the launch of a lunar orbiter and a lunar lander. To enable the transmission of lunar information based on multimedia, it is necessary to construct a communication system that is capable of transmitting large-volume telemetry data. The CCSDS standard recommends the deferred NAK mode as ARQ scheme for reliable long-distance deep-space communication systems. In this paper, we implement a space communication system simulator in the deferred NAK mode using models of the lunar orbiter, the earth station, and the space environment. The simulator employs modulation techniques and turbo coding schemes for transmitting large-volume telemetry data. We analyze the transmission performance of telemetry data through the simulation.

Satellite Trajectory Correction Maneuver for Lunar Mission based on Three-Body Dynamics (달탐사 임무를 위한 3체 운동방정식 기반의 인공위성 궤적보정 기동)

  • Cho, Dong-Hyun;Jung, Young-Suk;Lee, Dong-Hun;Jung, Bo-Young;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.875-881
    • /
    • 2010
  • During the lunar mission, spacecraft are subject to various unexpected disturbance sources such as third body attraction, solar pressure and operating impulsive maneuver error. Therefore, efficient trajectory correction maneuver (TCM) strategy must be required to follow the designed mission trajectory. In the early days of space exploration, the mission trajectory has been designed by using patched conic approach based on two-body dynamics for the lunar mission. Thus the TCM based on two-body dynamics has been usually adopted. However, with the advanced in computing power, the mission trajectory based on three-body dynamics is attempted recently. Thus, these approaches based on two-body dynamics are essentially different from real environment and large amount of energy for the TCM is required. In this work, we study the trajectory correction maneuver based on three-body dynamics.

Evaluation of Landing Stability of Lunar Lander Considering Various Landing Conditions (다양한 착륙환경변수를 고려한 달착륙선 착륙안정성 평가)

  • Jeong, Hyun-Jae;Lim, Jae Hyuk;Kim, Jin-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.124-132
    • /
    • 2018
  • In this paper, landing stability evaluation of lunar lander considering various landing conditions was performed. The status of landing stability of the lunar lander is classified into stable landing, conditionally stable landing due to sliding and unstable landing due to tip-over. In particular, the quasi-static tip-over equation was rearranged considering the phenomena of lowering the center of gravity and extension of foot-pad interval of the landing gear. These results were compared by finite element model analysis results using a commercial software ABAQUS and its validity and accuracy were verified. The verified finite element model was used for examining the tendency of various environmental variables such as landing conditions, friction coefficient, lateral speed and slope of ground.

Development Status of Domestic & Overseas Space Exploration & Associated Technology (국내외 우주탐사 프로그램 및 관련 기술의 개발현황)

  • Ju, Gwanghyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.8
    • /
    • pp.741-757
    • /
    • 2016
  • Over 60 years has passed since mankinds started space exploration beyond the Earth with lunar explorer Luna 1 launched by Soviet Union. Unprecedently remarkable outcomes have been obtained by sending unmanned spacecrafts to most planets in the solar system and having the lander landed on the approaching comet toward the Earth even though any evidence of life presence has not been discovered yet. Only moon is an natural object beyond the earth on which human beings landed. Many countries are planning to send humans to the moon or mars to build colonies and to survive with substantiality. Korean lunar exploration program has officially started as of 2016 after its plan including lunar exploration has been specified in the series of National Space Promotion Plan since Korea initiated space development in early 1990s. In this paper, the plan for Korean space exploration is summarized with reviewing overseas space exploration program status and trends.

Optimal Earth-Moon Trajectory Design using Constant and Variable Low Thrust (등저추력과 가변저추력을 이용한 지구-달 천이궤적 설계)

  • Song, Young-Joo;Park, Sang-Young;Choi, Kyu-Hong;Sim, Eun-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.843-854
    • /
    • 2009
  • For preparing Korean lunar missions, optimal Earth-Moon transfer trajectory is designed using continuous low thrust. Using both constant and variable low thrusting method, "End-to-End" mission analysis is made from beginning of the Earth departure to the final lunar arrival. Spacecraft's equations of motion is expressed using N-body dynamics including the gravitational effects due to the Earth, Moon, Sun and also with Earth's $J_2$ effects. Planets' exact locations are computed accurately with JPL's DE405 ephemeris. As a results, optimal thrust steering angle's characteristics are discovered which showed almost tangential direction burns at the near of central planets. Also, it is confirmed that variable low thrusting method is more efficient than constant thrusting method, and can save about 5% of fuel consumption. Presented algorithm and various results will give numerous insights into the future Korea's Lunar missions using low thrust engines. Also, it is expected to be used as a basis of more detailed mission analyzing tool.

Sequential Approximate Optimization of Shock Absorption System for Lunar Lander by using Quadratic Polynomial Regression Meta-model (2차 다항회귀 메타모델을 이용한 달착륙선 충격흡수 시스템의 순차적 근사 최적설계)

  • Oh, Min-Hwan;Cho, Young-Min;Lee, Hee-Jun;Cho, Jin-Yeon;Hwang, Do-Soon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.314-320
    • /
    • 2011
  • In this work, optimization of two-stage shock absorption system for lunar lander has been carried out. Because of complexity of impact phenomena of shock absorption system, a 1-D constitutive model is proposed to describe the behavior of shock absorption system. Quadratic polynomial regression meta-model is constructed by using a commercial software ABAQUS with the proposed 1-D constitutive model, and sequential approximate optimization of two-stage shock absorption system has been carried out along with the constructed meta-model. Through the optimization, it is verified that landing impact force on lunar lander can be considerably reduced by changing the cell size and foil thickness of honeycomb structure in two-stage shock absorption system.

Reproductive Cycle of Top Shell, Trochus niloticus in Chuuk Island, Micronesia (Micronesia Chuuk Island에 서식하는 Top shell, Trochus niloticus의 생식주기)

  • Jin, Young-Seok;Park, Yong-Ju;Kim, Han-Jun;Na, Oh-Soo;Song, Young-Bo;Lee, Chi-Hoon;Choi, Myun-Sik;Rho, Sum;Lee, Young-Don
    • The Korean Journal of Malacology
    • /
    • v.20 no.1
    • /
    • pp.65-73
    • /
    • 2004
  • Gametogenesis, changes of gonad bulk index (GBI), monthly variation in oocyte diameter, reproductive cycle and spawning with lunar cycle of the top shell, Trochus niloticus were investigated by histological examination. The specimens were sampled in the coastal waters of Chuuk Island, Micronesia, form November 1999 to September 2000. T. niloticus is a gonochorism, and the female and male were present in an approximately 1:1 ratio (p > 0.05). The ovary contained with the oocyte of yolk stage, the testis composed of the spermatid and spermatozoa at around the year. Monthly GBI were higher at February, March, April and June than the other months. Major spawning occurred between April and May, and June and July but the individuals of partially spawning were presented throughout the year. GBI with lunar cycle were higher at the full moon than the other lunar phase. These results suggest that the spawning occurred between the full moon and last quarter moon.

  • PDF

Product Assurance for the Payload of the Satellite System (위성 탑재체 제품보증에 대한 고찰)

  • Kim, Il-Young;Kwon, Jai-Wook;Moon, Sang-Man;Seok, Byong-Seok
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.2
    • /
    • pp.30-34
    • /
    • 2017
  • This paper is concerned with product assurance for the secondary payload, which is used for technology and science research, in the satellite system, which consists primarily of the spacecraft and the primary payload (a high-resolution optical camera). The Korean satellite development program has successfully insured the safety of the spacecraft and primary payload. However, given the limits of budget and schedule, it is very important to establish adequate product assurance for the secondary payload, which has a lower priority than the spacecraft or primary payload. This paper studies the concept of product assurance for the secondary payload of technological and scientific equipment.