DOI QR코드

DOI QR Code

Sequential Approximate Optimization of Shock Absorption System for Lunar Lander by using Quadratic Polynomial Regression Meta-model

2차 다항회귀 메타모델을 이용한 달착륙선 충격흡수 시스템의 순차적 근사 최적설계

  • 오민환 (인하대학교 항공우주공학과 대학원) ;
  • 조영민 (인하대학교 항공우주공학과 대학원) ;
  • 이희준 (인하대학교 항공우주공학과 대학원) ;
  • 조진연 (인하대학교 항공우주공학과) ;
  • 황도순 (한국항공우주연구원)
  • Received : 2010.12.17
  • Accepted : 2011.03.23
  • Published : 2011.04.01

Abstract

In this work, optimization of two-stage shock absorption system for lunar lander has been carried out. Because of complexity of impact phenomena of shock absorption system, a 1-D constitutive model is proposed to describe the behavior of shock absorption system. Quadratic polynomial regression meta-model is constructed by using a commercial software ABAQUS with the proposed 1-D constitutive model, and sequential approximate optimization of two-stage shock absorption system has been carried out along with the constructed meta-model. Through the optimization, it is verified that landing impact force on lunar lander can be considerably reduced by changing the cell size and foil thickness of honeycomb structure in two-stage shock absorption system.

본 연구에서는 2단으로 구성된 달착륙선 충격 흡수 장치에 대한 최적화를 수행하였다. 충격 흡수 장치의 복잡한 충격거동을 모사하기 위해 1차원 구성방정식 모델을 제안하였으며, 이와 함께 상용해석 소프트웨어인 ABAQUS를 활용하여 최적화를 위한 2차 다항회귀 메타모델을 구성하였다. 구성된 메타모델을 순차적 근사 최적설계 기법에 적용하여 2단 충격 흡수 장치의 최적화를 수행하였으며, 이를 통해 허니컴 구조를 이용한 충격 흡수장치의 셀크기와 포일 두께를 변화시킴에 따라 달착륙선의 월면 착륙 시 충격하중을 크게 저감시킬 수 있음을 확인하였다.

Keywords

References

  1. B. A. Cohen, the ILN Science Definition Team, "The International Lunar Network", NASA Marshall Space Flight Center, Huntsville AL 35812.
  2. Simpson, T. W., Peplinkski, J., Koch, P. N. and Allen, J. K., "Metamodels for Computer based Engineering Design: Survey and Recommendations", Engineering with Computers, Vol. 17, No. 2, 2001, pp. 129-150. https://doi.org/10.1007/PL00007198
  3. Wang, G. G., Shan, S., "Review of Metamodeling Techniques in Support of Engineering Design Optimization", Transactions of the ASME, Journal of Mechanical Design, Vol. 129, No. 4, 2007, pp. 370-380. https://doi.org/10.1115/1.2429697
  4. Sorensen, D. C., "Newton’s Method with a Model Trust Region Modification." SIAM Journal on Numerical Analysis, Vol. 19, No. 2, 1982, pp. 409-426. https://doi.org/10.1137/0719026
  5. Fletcher, R., Practical Methods of Optimization. 2nd Ed. John Wiley & Sons.
  6. Rodriguez, J. F., Renaud, J. E., Watson, L. T., "Convergence of Trust Region Augmented Lagrangian Methods using Variable Fidelity Approximation Data", Structural Optimization, Vol. 15, Nos. 3-4, 1998, pp. 141-156. https://doi.org/10.1007/BF01203525
  7. McKay, M. D., Bechman, R. J., Conover, W. J., “A comparison of three methods for selecting values of input variables in the analysis of output from a computer code”, Technometrics, Vol. 21, No. 2, 1979, pp. 239-246. https://doi.org/10.2307/1268522
  8. Raphael T. Haftaka and Zafer Gurdal, Elements of Structural Optimization. Third Revised and Expanded Edition. KLUWER ACADEMIC PUBLISHERS.
  9. Willian F. Rogers, Apollo Experience report -Lunar module landing gear subsystem, Manned Spacecraft Center, Houston, Texas 77058.
  10. Levent Aktay, Alastair F. Johnson, Bernd-H Kroplin, "Numerical modelling of honeycomb core crush behaviour", Engineering Fracture Mechanics, Vol. 75, No. 9, 2008, pp. 2616-2630. https://doi.org/10.1016/j.engfracmech.2007.03.008
  11. $HexWeb^{TM}$ Honeycomb Attributes and Properties, HEXCEL Composites.

Cited by

  1. Optimization of shock absorption system for lunar lander considering the effect of lunar regolith vol.42, pp.4, 2014, https://doi.org/10.5139/JKSAS.2014.42.4.284