• Title/Summary/Keyword: luminance sensor

Search Result 50, Processing Time 0.033 seconds

A Road Luminance Measurement Application based on Android (안드로이드 기반의 도로 밝기 측정 어플리케이션 구현)

  • Choi, Young-Hwan;Kim, Hongrae;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.16 no.2
    • /
    • pp.49-55
    • /
    • 2015
  • According to the statistics of traffic accidents over recent 5 years, traffic accidents during the night times happened more than the day times. There are various causes to occur traffic accidents and the one of the major causes is inappropriate or missing street lights that make driver's sight confused and causes the traffic accidents. In this paper, with smartphones, we designed and implemented a lane luminance measurement application which stores the information of driver's location, driving, and lane luminance into database in real time to figure out the inappropriate street light facilities and the area that does not have any street lights. This application is implemented under Native C/C++ environment using android NDK and it improves the operation speed than code written in Java or other languages. To measure the luminance of road, the input image with RGB color space is converted to image with YCbCr color space and Y value returns the luminance of road. The application detects the road lane and calculates the road lane luminance into the database sever. Also this application receives the road video image using smart phone's camera and improves the computational cost by allocating the ROI(Region of interest) of input images. The ROI of image is converted to Grayscale image and then applied the canny edge detector to extract the outline of lanes. After that, we applied hough line transform method to achieve the candidated lane group. The both sides of lane is selected by lane detection algorithm that utilizes the gradient of candidated lanes. When the both lanes of road are detected, we set up a triangle area with a height 20 pixels down from intersection of lanes and the luminance of road is estimated from this triangle area. Y value is calculated from the extracted each R, G, B value of pixels in the triangle. The average Y value of pixels is ranged between from 0 to 100 value to inform a luminance of road and each pixel values are represented with color between black and green. We store car location using smartphone's GPS sensor into the database server after analyzing the road lane video image with luminance of road about 60 meters ahead by wireless communication every 10 minutes. We expect that those collected road luminance information can warn drivers about safe driving or effectively improve the renovation plans of road luminance management.

Auto-Exposure Control using Loop-Up Table Based on Scene-Luminance Curve in Mobile Phone Camera (입.출력 특성곡선에 기초한 Look-Up Table 방식의 자동노출제어)

  • Lee, Tae-Hyoug;Kyung, Wang-Jun;Lee, Cheol Hee;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.4
    • /
    • pp.56-62
    • /
    • 2010
  • Auto-exposure control automatically calculates and adjusts the exposure for consecutive input image. Recently, this is usually controlled by the sensor gain, however, unsuitable control causes oscillation of luminance for sonsecutive input images, called as flickering. Also, in mobile phone cameras, only simple information, such as the average luminance value, can be utilized due to coarse performance. Therefore, this paper presents a new real-time AE control method using a Look Up Table(LUT) based on Scene-Luminance curves to avoid the generation of flickering. Prior to the AE control, a LUT is constructed, which illustrates the characteristic of outputs for input patches corresponding to sensor gains. The AE control is first performed by estimating a current scene as a patch using the proposed LUT. A new sensor gain is then estimated using also LUT with previously estimated patch. The entire estimation process is performed using linear interpolation to achieve real-time execution. Based on experimental results, the proposed AE control is demonstrated with real-time, flicker-free.

Design and Implementation of An Authentication System for Residential Permit Parking Using Wireless Sensor Networks (무선 센서 네트워크를 이용한 거주자우선주차 인증시스템의 설계 및 구현)

  • Park, Jun-Sik;Kwon, Chun-Ja;Kim, Hyun-Chun;Kim, Brian
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.1037-1045
    • /
    • 2007
  • An efficient management system for parking lots and traffic monitoring in a metropolitan city is a very important issue, which is tightly closed to qualify of life. While a residential permit parking program has been contributing to resolve the lack of parking places, there has been no autonomous authentication system due to no apparent entrance gate and smallness of each parking zone. In this paper, we propose and implement an authentication system for residential permit parking lot using wireless sensor networks, which is cost-effective and even no need for additional managing person. Through the experimental evaluation, we analyzed relationship between the life time of sensor nodes and the various values of sleep periods to minimize power consumption of the nodes, and also showed that the difference of luminance sensed by each sensor node is at least 45 or bigger between when the parking place is occupied or not, resultingly it can be used to decide whether a parking place is occupied or not by simply detecting the change of luminance sensed.

Auto Exposure Control System using Variable Time Constants (가변 시상수를 이용한 자동 노출제어 시스템)

  • Kim, Hyun-Sik;Lee, Sung-Mok;Jang, Won-Woo;Ha, Joo-Young;Kim, Joo-Hyun;Kang, Bong-Soon;Lee, Gi-Dong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.257-264
    • /
    • 2007
  • In order to obtain a fine picture, a camera has many convenient functions. Its representative functions are Auto Focus(AF), Auto White Balance(AWB) and Auto Exposure(AE). In this paper, we present the new algorithm of Auto Exposure control system, one of its useful functions The proposed algorithm of Auto Exposure control system is based on IIR Filter with Variable Time Constant. First, in order to establish the standards of exposure control, we compare change of the picture luminance with luminance of an object in the Zone system. Second, we make an ideal characteristic graph of luminance by using the results. Finally, we can find the value of the right exposure by comparing an ideal characteristic graph of the luminance with the value of the current expose of a scene. We can find an appropriate exposure as comparing the ideal characteristic graph of the luminance with current exposure of a scene. In order to find a suitable exposure state, we make use of IIR Filter instead of a conventional method using micro-controller. In this paper, the proposed system has therefore simple structure, we use it for compact image sensor module used in the handheld device.

Design of an Intelligent Streetlight System in USN

  • Oh, Sun Jin
    • International Journal of Advanced Culture Technology
    • /
    • v.2 no.2
    • /
    • pp.1-6
    • /
    • 2014
  • In this paper, we propose an intelligent streetlight system that has a complex sensor module of temperature, humidity, luminance and motion detection and controlled by the fuzzy logic based central monitoring system in order to get flexible and precise manipulation of the streetlight system in USN environment. The proposed streetlight system provides low power consumption and high efficiency by using sensed data from the complex sensor module, which were collected, processed, and analyzed by the fuzzy logic based central monitoring system. The performance of the proposed streetlight system is to be evaluated by a simulation study in terms of power savings and safety at the fields constructed as a test-bed under several suggested scenarios. Finally, we know that the proposed intelligent streetlight system can maximize the energy savings efficiently with the fuzzy logic based central monitoring system and selective remote dimming control by connecting it to the wireless ubiquitous sensor network (USN) using a Zigbee module.

Comparative Daylighting Performance Analysis of Offices in 1/10, 1/5 Scale Models and Mock-up Model (실물대모형 및 1/5, 1/10축소모형의 자연채광 성능평가에 관한 비교분석)

  • Baik, Seung Heon;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.6 no.4
    • /
    • pp.25-32
    • /
    • 2006
  • Mock-up model can be applied to measure accurate performance data but difficult to apply the variables in experiment. There can be a slight experiment errors in Scale model, but various parameters can be applied for a objective experiment. This paper aims to compare the daylighting performance in 1, 1/5, 1/10 scale model of offices and analyze the experiment errors to certificate the influence of model experiment. To analyse daylighting performance, a comparison of a Mock-up model, sized $12.0m(w){\times}7.2m(l){\times}3.7m(h)$, designed for experimentation of daylighting systems and its 1:5, 1:10 scale model. It has an identical configuration of reference room and the test room. For the test room, the lightshelf system was designed as Micro-4 reflective material. To assess work plane illuminance and light factor, photometric sensors of each room were installed at work-plane(6 points) and exterior horizontal illuminance (1 point). And luminance of window, rare of the room was measured under clear sky. It is to be monitored by Agilent data logger, photometric sensor Li-cor and the Radiant Imaging ProMetric 1400. Comparisons with a light factor, increase-decrease ratio and luminance are discussed.

Electro-optical properties of organic EL device (유기 EL 소자의 전기-광학적 특성)

  • Kim, Min-Soo;Park, Lee-Soon;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.252-257
    • /
    • 1997
  • Organic EL devices, which have the sing3e-layer structure of ITO(indium-tin-oxide) /PPV(poly(p-phenylene vinylene))/cathode and the double-layer structure of ITO/PVK (poly(N- vinylcarbazole)) /PPV/cathode, were fabricated and their electro-optical properties were investigated. Experimental results, in single-layer structure, shown that the increment of temperature for thermal conversion of PPV film from $140^{\circ}C$ to $260^{\circ}C$ decreases the maximum luminance from $118.8\;cd/m^{2}$(20V) to $21.14\;cd/m^{2}$(28V) and shift the maximum peak of EL spectrum from 500nm to 580nm. The lower the work function of cathode is, the more the luminance and injection current of device. In double-layer structure, as the concentration of PVK solution decreases from 0.5 wt% to 0.05 wt%, the luminance of device increases from $70.71\;cd/m^{2}$(32V) to $152.7\;cd/m^{2}$(26V).

  • PDF

Design of Efficient Flicker Detector for CMOS Image Sensor (CMOS Image sensor 를 위한 효과적인 플리커 검출기 설계)

  • Lee, Pyeong-Woo;Lee, Jeong-Guk;Kim, Chae-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.739-742
    • /
    • 2005
  • In this paper, an efficient detection algorithm for the flicker, which is caused by mismatching between light frequency and exposure time at CMOS image sensor (CIS), is proposed. The flicker detection can be implemented by specific hardware or complex signal processing logic. However it is difficult to implement on single chip image sensor, which has pixel, CDS, ADC, and ISP on a die, because of limited die area. Thus for the flicker detection, the simple algorithm and high accuracy should be achieved on single chip image sensor,. To satisfy these purposes, the proposed algorithm organizes only simple operation, which calculates the subtraction of horizontal luminance mean between continuous two frames. This algorithm was verified with MATLAB and Xilinx FPGA, and it is implemented with Magnachip 0.18 standard cell library. As a result, the accuracy is 95% in average on FPGA emulation and the consumed gate count is about 7,500 gates (@40MHz) for implementation using Magnachip 0.18 process.

  • PDF

An Efficient Color Interpolation Method for Color Filter Array (색상 필터 배열을 위한 효율적인 색상 보간 방법)

  • Cho, Yang-Ki;Kim, Hi-Seok
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.6 s.312
    • /
    • pp.92-100
    • /
    • 2006
  • In imaging devices such as digital cameras using a single image sensor, captured images are the sub-sampled images comprised of the pixels that have only one of the three primary colors per a pixel. This images should be restored to the color images through an image processing referred as color interpolation. In this paper, we derive relation between the average of the data from CFA image sensor and the average of each color channel data. By using this relation, a new efficient method for color interpolation is proposed. Also, in order to reduce the zipper effect in a restored image, missing luminance values are interpolated along any edges in the captured image. On the other hand, for the chrominance channel interpolation, we average difference between a chrominance value and a luminance value in a local area, and this average value is added to the pixel value of the interpolated location. The proposed method has been compared with several previous methods, and our experimental results show the better results than the other methods.

An efficient Color Edge Fuzzy Interpolation Method for improving a Chromatic Aberration (색수차 개선을 위한 효율적인 컬러 에지 퍼지 보간 방법)

  • Byun, Oh-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.10
    • /
    • pp.59-70
    • /
    • 2010
  • Each pixels become got pixel value for color of only one from among colors because of bayer pattern that light receiving device of image sensor which is used in HHP and digital camera writes only one color. Information of the missing pixels could infer perfect color image from using information of neighbor pixels by using CFA(Color Filter Array). In this paper, we derive relation between the average of the data from the light receiving device of image sensor and each color channel data. And by using this relation, a new efficient edge color fuzzy method for color interpolation is proposed. Also, missing luminance signal channel interpolation was fuzzy interpolation along any edges direction for reducing color noise and interpolating efficiently it. And in this paper, the proposed method has been proved improving average 2.4dB than the conventional method by using PSNR. Also, resolution of the image of the proposed method was similar to the original image by visual images, we has been verified to be decreased a chromatic aberration than image of conventional algorithms with simulation result.