• Title/Summary/Keyword: lumen loading

Search Result 12, Processing Time 0.027 seconds

Evaluation of Lumen-loaded Fiber with Micro Metal Particles (미세금속입자의 루멘충전 특성평가)

  • Sung, Yong-Joo;Jung, Woong-Ki;Lee, Ji-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.99-107
    • /
    • 2012
  • In this study, the lumen loading technology for preparing magnetic papers were evaluated. The rice husk fiber, softwood kraft pulp, hardwood kraft pulp were applied and the morphological properties of pits on the those fibers were investigated with SEM. The softwood kraft pulp had the bigger size of pits, $3{\sim}5{\mu}m$ in diameter, which resulted in higher loading amount. The comparison of two methods for lumen loading such as the low concentration method with the disintegrator and the high concentration method with the Hobart mixer showed the Hobart mixer could resulted in the higher efficiency. The conditions of lumen loading process such loading time, addition amount of metal particles and addition of PEI were also evaluated. The magnetic hysteresis loop of handsheet samples made of lumen loaded fiber with $Fe_3O_4$ and $Fe_2O_3$ were examined. The differences in magnetic properties could be found according to the ferrite types.

Cell Wall Micropore Loading of Pulp Fibers (펄프 섬유의 세포벽 미세공극 충전)

  • Lee, Jong-Man;Jo, Byoung-Muk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.57-64
    • /
    • 1992
  • The unique cell wall micropores of pulp fiber can be utilized as loading site in variety of important practical application which could be the basis of new papermaking technologies. One of these includes the manufature of paper containing higher levels of in situ filler precipitated. Hardwood pulp fiber were first impregnated with the solution of sodium carbonate($Na_2CO_3$). The micropores in cell wall of pulp fibers were filled with the liquid salt solution. The second calcium nitrate($Ca(NO_3)_2$) solution formed an insoluble calcium carbonate($CaCO_3$) precipitate within the cell wall micropores by interacting with the first sodium carbonate solution. The effects of chemical concentration and dryness of pulp fibers on the retention of cell wall micropore loaded filler were investigated. The paper properties of cell wall micropore loaded pulp fibers were compared with those of conventionally loaded and lumen loaded pulp fibers. Also the presense of the fillers within the cell wall micropore was observed by SEM. Increasing the chemical concentration to generate the calcium carbonate increased the retention of filler in cell wall micropore loaded pulp fibers. The particle size distribution of precipitated calcium carbonate ranged from $0.1{\mu}m$ to $80{\mu}m$. But, the average particle size of cell wall micropore loaded calcium carbonate was $4{\mu}m$. The paper made from never dried pulp fibers, the cell wall micropores which were filled with calcium carbonate, had better mechanical and optical properties than those of conventionally loaded or lumen loaded pulp fibers.

  • PDF

Evaluation of Alginate Microspheres Prepared by Emulsion and Spray Method for Oral Vaccine Delivery System (유화법과 분무법에 의해 제조된 경구백신용 알긴산 마이크로스피어의 평가)

  • Jiang, Ge;Jee, Ung-Kil;Maeng, Pil-Jae;Hwang, Sung-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.4
    • /
    • pp.241-256
    • /
    • 2001
  • Alginate microspheres, containing fluorescein isothiocyanate-bovine serum albumin (FITC-BSA) or green fluorescent protein (GFP) were prepared and used as a model drug to develop the oral vaccine delivery system. The alginate microspheres were coated with poly-L-lysine or chitosan. Two methods, w/o-emulsion and spray, were used to prepare alginate microspheres. To optimize preparation conditions, effects of several factors on the particle size and particle morphology of microsphere, and loading efficiency of model antigen were investigated. In both preparation methods, the particle size and the loading efficiency were enhanced when the concentration of sodium alginate increased. In the w/o-emulsion preparation method, as the concentration of Span 80 was increased from 0.5% to 2%, the particle size was decreased, but the loading efficiency was increased. The higher the emulsification speed was, the smaller the particle size and loading efficiency were. The concentration of calcium chloride did not show any effect on the particle size and loading efficiency. In the spray preparation method, the particle size was increased as the nozzle pressure $(from\;1\;kgf/m^2\;to\;3\;kgf/m^2)$ and spray rate was raised. Increasing calcium chloride concentration (<7%) decreased the particle size, in contrast to no effect of calcium chloride concentration on the w/o-emulsion preparation method. Alginate microspheres prepared by two methods were different in the particle size and loading efficiency, the particle size of microspheres prepared by the spray method was about $2-6\;{\mu}m$, larger than that prepared by the w/o emulsion method $(about\;2{\mu}m)$, and the loading efficiency was also higher with spray method. Furthermore, drying process for the microspheres prepared by the spray was simpler and easier, compared with the w/o emulsion preparation. Therefore, the spray method was chosen to prepare alginate microspheres for further experiments. Release pattern of FITC-BSA in alginate microspheres was evaluated in simulated intestinal fluid and PBS (phosphate buffered saline). Dissolution rate of FITC-BSA from alginate/chitosan microsphere was lower than that from alginate microsphere and alginate/poly-L-lysine microsphere. By confocal laser scanning microscope, it was revealed that alginate/FITC-poly-L-lysine microspheres were present in close apposition epithelium of the Peyer's patches of rabbits following inoculation into lumen of intestine, which proved that microspheres could be taken up by Peyer's patch. In conclusion, it is suggested that alginate microsphere prepared by spray method, showing a particle size of & $10\;{\mu}m$ and a high loading efficiency, can be used as a model drug for the development of oral vaccine delivery system.

  • PDF

New Coating Method for Sustained Drug Release: Surface Modification of ePTFE Grafts by inner coating PLGA

  • Kim, Hyeseon;Park, Seohyeon;Kim, Dae Joong;Park, Jong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1333-1336
    • /
    • 2014
  • Expanded polytetrafluoroethylene (ePTFE) grafts have been used as vascular access for many patients suffering from end stage renal disease. However, the vascular graft can cause significant clinical problems such as stenosis or thrombosis. For this reason, many studies have been performed to make drug eluting graft, but initial burst is major problem in almost drug eluting systems. Therefore we used biodegradable polymer to reduce initial burst and make sustained drug delivery. The ePTFE grafts were dipped into a paclitaxel-dissolved solution and then PLGA-dissolved solution was passed through the lumen of ePTFE. We analyzed whether the dose of paclitaxel is enough and the loading amount of PLGA on ePTFE graft increases according to the coating solution's concentration. Scanning electron microscope (SEM) images of various concentration of PLGA showed that the porous surface of graft was more packed with PLGA by tetrahydrofuran solution dissolved PLGA. In addition, in vitro release profiles of Ptx-PLGA graft demonstrated that early burst was gradually decreased as increasing the concentration of PLGA. These results suggest that PLGA coating of Ptx loaded graft can retard drug release, it is useful tool to control drug release of medical devices.

Static Modeling of a Miniaturized Continuum Robot for Surgical Interventions and Displacement Analysis under Lateral External Loads (중재 시술 적용을 위한 소형 연속체 로봇의 정역학 모델링 및 외부 측면 하중에 의한 변위 분석)

  • Kim, Kiyoung;Woo, Hyunsoo;Cho, Jangho;Shin, Minki;Suh, Jungwook
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.301-308
    • /
    • 2020
  • In this paper, we deal with the static modeling of a continuum robot that can perform surgical interventions. The proposed continuum robot is made of stainless steel wires and a multi lumen flexible tube using a thermoplastic elastomer. This continuum robot could be most severely deformed in physical contact with narrow external environments, when a lateral external force acts at the distal tip of the continuum robot. In order to predict the shape and displacement under the lateral external force loading, the forward kinematics, the statics modeling, the force-moment equilibrium equation, and the virtual work-energy method of the continuum robot are described. The deflection displacements were calculated using the virtual work-energy method, and the results were compared with the displacement obtained by the conventional cantilever beam theories. In conclusion, the proposed static modeling and the virtual work-energy method can be used in arrhythmia procedure simulations.

On the dimensional stabilization of woods with treatment of Polyethylene Glycol-400 (폴리에치렌 글리콜-400에 의한 목재(木材)의 칫수안정화(安定化))

  • Cho, Nam-Seok;Jo, Jea-Myeong;Bae, Kyu-Yong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.3-15
    • /
    • 1975
  • How to stabilize wood against shrinking and swelling in variable atmospheric moisture conditions is important to the wood-using industry and a challenge to research. Polyethylene glycol stabilize wood by bulking the fiber. PEG also serve as a chemical seasoning agent, suppress decay in high concentrations, and have slight effect on physical properties, gluing or finishing. The study designed to determine the effect of PEG-400 on the dimensional stabilization of local hardwoods for wood carvings that could supply a greatly expanding tourist trade and making curved furniture parts, lamp stands and other decorative objects, and possible gunstock. The species examined were 6 species, Seo-Namoo (Carpinus laxiflora), Cheungcheung-Namoo (Cornus controversa), Gorosae-Namoo (Acer mono), Karae-Namoo (Juglans mandshurica), Jolcham-Namoo (Quercusserrata) and Sanbud-Namoo (Prunus sargentii), used as block of 5cm thick radially to the grain, 7cm wide tangentially, and 70cm long parallel to the wood grain. All these test piecies were conditioned above the fiber saturation point before impregnation. The stabilization effects were determined for PEG-400 treated woods in a 50 percent solution for 20 days. The following conclusions were obtained. PEG retentions increased with treating time. It was more effective to treat at 60$^{\circ}C$ than at room temperature. In degree of PEG-400 impregnation on species, Cheungcheung-Namoo havinglow specific gravity had the highest retentions, 68.77% but the lowest, 56.33% was shown in Jolcham-Namoo with high specific gravity. Specific gravity of treated wood increased considerably with effectiveness of polymer loading. The increases in specific gravity were 5.36 to 13.16 percent. The highest was Jolcham-Namoo, the lowest Karae-Namoo. On the dimensional stability, a 40 percent of effectiveness of polymer loading was just as effective as 60 percent in reduction in water absorptivity (RWA), antishrinkage efficiency (ASE) and antiswelling efficiency (AE), and from over 60 percent they increased more rapidly. Also species response varied considerably. ASE was 30.12 to 69.97 percent tangentially and 27.86 to 56.37 percent radially, AE 34.06 to 73.76 percent tangentially and 30.11 to 70.12 percent radially, and RWA 42.31 to 65.32 percent. No differences in volume swelling among the 6 species were observed. Its values were ranged from 14.98 to 19.55 percent and also increased with PEG retentions. On the mechanical properties, the strengths very much decreased with PEG-400 loadings as shown in Figure 12; that were 11.41 to 22.90 percent in compression, 21.61 to 34.35 percent in bending and 22.83 to 36.83 percent in tensile strength. PEG retention in cell wall was less than 1 percent and the most of PEG were immersed in cell lumen. Except for Korae-Namoo, effectivenesses of polymer loading were as much high as 61.58 to 75.02 percent. This is believed to be due to the effect of PEG-400 on excellant dimensional stability of treated woods.

  • PDF

Do Paneth Cells Regulate the Zinc Body Burden? (Zinc 대사와 관련된 Paneth 세포활성의 변화에 관한 조직화학적 연구)

  • Jo, Seung-Mook;Kim, Sung-Jun;Park, Seung-Kook;Kang, Tae-Cheon;Won, Moo-Ho
    • Applied Microscopy
    • /
    • v.30 no.4
    • /
    • pp.357-365
    • /
    • 2000
  • Paneth cells have been suggested to contribute to the elimination of excess metals into the intestinal lumen. The purpose of this study wat to investigate the changes of the zinc pools in rats subjected to functional loading with zinc salt by mean of both light and electron microscopical autometallography (AMG). Wistar rats 4 were administrated with zinc chloride (20 mg/kg body weight) intraperitoneally dissolved in 1 ml distilled water. The control group received 1 ml saline IP. After further one hour the animals were transcardially perfused with 0.4% sodium sulphide dissolved in 0.1 M PB fellowed by 3% glutaraldehyde solution for 10 minutes. Pieces of ileum were frozen with solid $CO_2$ and sectioned on a cryostat. The sections $(20{\mu}m)$ were autometallographically developed. Sections selected for EM were reembedded on top of a blank Epon block, from which ultrathin sections (100 nm) were cut. The ultrathin sections were double stained with uranyl acetate (30 min) and lead citrate (5 min), then examined under electron microscope. Studies of comparable sections from control and zinc loaded animals with the AMG selenium method gave quite different results. The control animals demonstrated a weakly positive staining in the cytoplasm of the Paneth cells. In the electron microscope the AMG silver grains were found to be located in the cytoplasm, while the electron dense secretary granules and other cell organelles were void of staining. Few AMG grains were located at the apical surface of the Paneth cells. In sections from zinc loaded rats, the AMG grains were seen in abundance in the lumen of the Lieberkuhn crypts at light microscopic levels. At EM levels the zinc revealing silver grains were located in the cytoplasm as in the controls, but much more AMG grains were shifted into the secretary granules. Furthermore, profound AMG grains were found in the lumen of the crypts and surrounding vessels. And a few grains were seen in the endothelium. The AMG technique demonstrated a pattern of AMG grains in the Paneth cells that strongly suggests a transport of zinc ions through these cells.

  • PDF

Fundamental Study on Developing Lignocellulosic Fillers for Papermaking(II) - Effect of lignocellulosic fillers on paper properties - (목질계 제지용 충전제 개발을 위한 기초연구(II) - 목질계 충전제가 종이 물성에 미치는 영향 연구 -)

  • Kim, Chul-Hwan;Lee, Ji-Young;Lee, Young-Rok;Chung, Ho-Kyung;Back, Kyung-Kil;Lee, Hui-Jin;Gwak, Hye-Joeng;Gang, Ha-Ryun;Kim, Sung-Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.2
    • /
    • pp.1-6
    • /
    • 2009
  • The purpose of this study was to investigate effects of lignocellulosic fillers made of wood powder and inorganic fillers, such as GCC and PCC, on physical properties of papers. Mechanical treatment and chemical treatment were carried out subsequently for generating lignocellulosic fillers, and then inorganic filler and wood powder were mixed together, and then mechanically treated for making lignocellulosic fillers covered with inorganic fillers. Consequently the particle size of lignocellulosic fillers was higher than that of inorganic fillers, which led to lumen loading and simultaneously surface coverage of fine inorganic fillers. Lignocellulosic fillers contributed to the increase of both bulk and opacity of handsheets dramatically, but some of properties including tensile strength, brightness and roughness decreased compared to inorganic fillers.

Nitrogen Removal using Autotrophic Microorganism in Membrane-Attached Biofilm Reactor (MABR) (Membrane-Attached Biofilm Reactor(MABR)에서의 독립영양 미생물을 이용한 질소 제거)

  • Shin, Jeong-Hoon;Sang, Byoung-In;Chung, Yun-Chul;Choung, Youn-Kyoo
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.624-629
    • /
    • 2005
  • The purpose of this study is to investigate the performance of nitrogen removal using autotrophic microorganism in the Membrane-Attached Biofilm Reactor (MABR). The treatment system consists of an aerobic MABR (R1) for nitrification and an anaerobic MABR (R2) for hydrogenotrophic denitrification. Oxygen and hydrogen were supplied through the lumen of hollow-fiber membranes as electron acceptor and donor, respectively. In phase Ι, simultaneous organic carbon removal and nitrification were carried out successfully in R1. In phase II, to develop the biofilm on the hollow-fiber membrane surface and to acclimate the microbial community to autotrophic condition, R1 and R2 were operated independently. The MABRs, R1 and R2 were connected in series continuously in phase III and operated at HRT of 8 hr or 4 hr with $NH_4{^+}-N$ concentration of influent, from 150 to 200 mgN/L. The total nitrogen removal efficiency reached the maximum value of 99% at the volumetric nitrogen loading rate of $1.20kgN/m^3{\cdot}d$ in the combined MABR system with R1 and R2. The results in this study demonstrated that the combined MABR system could operate effectively for the removal of nitrogen in wastewater not containing organic materials and can be used stably as a high rate nitrogen removal technology.

침지형 분리막을 사용한 오수처리

  • 최광호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.06a
    • /
    • pp.113-133
    • /
    • 1998
  • In activated sludge process, sludge settling condition is affected by organic loading rate or operation condition, and if settling condition is getting worse, it is common that overall process fails due to wash-out of biomass causing low concentration in the aeration tank. Also activated sludge process has such several problems as requiring large area, consuming a lot of power and producing large volume of sludge. Increased public concern over health and the environment combined with a strong desire to reduce capital, operating and maintenance costs, have created a need for innovative technologies for building new high quality effluents which vail meet 21st century crkeria. MBR(Membrane Bioreactor) process consists of a biological reactor and ultrafiltration(UF) membrane system that replaces the conventional clarifier of an activated sludge process. The main operating advantages of this system are that the quality of the effluent is independent of the settleability of the mixed liquor and that the effluent is free of suspended solids in any operating condition. It is possible to eliminate clarifier and to reduce the volume of aeration tank because it can afford to accumulate high biomass concentration in the bioreactor(20, 000~30, 000mg/L), which would not be possible in a conventional activated sludge process. Therefore, this process reduces overall treatment plant area. In addition to those advantages, Longer SRT condition enables higher sludge digestion in MBR process so the sludge volume produced is 50 to 70% lower than that of conventional activated sludge process There are two kinds of MBR process according to the allocations of membrane. One is cross flow type MBR of which module is located outside of the bioreactor and mixed liquor is driven into the membrane module. The other is submerged type MBR process of which module is submerged in the bioreactor and mixed liquor is generally sucked from the lumen side. addition to that the cake layer is often removed by the uplifting flow of bubbling air. A submerged MBR process is superior to a crossflow MBR in regard to the power consumption because suction pressure of a submerged MBR is generally lower than that of a crossflow MBR which has recirculation pump. A submerged MBR, therefore, has the potential to be applied to small wastewater treatment plants that need low cost treatment systems.

  • PDF