• Title/Summary/Keyword: low-temperature oxide

Search Result 1,090, Processing Time 0.03 seconds

Enhancement of Skin Immune Activities of Spirulina maxima by High Pressure Extraction Process (Spirulina maxima 초고압 추출물의 피부 면역 활성 증진)

  • Oh, Sung-Ho;Kang, Do-Hyung;Choi, Woon-Yong;Seo, Yong-Chang;Heo, Soo-Jin;Abu, Affan Md.;Jeong, Kyung-Hwan;Lee, Hyeon-Yong
    • Ocean and Polar Research
    • /
    • v.32 no.2
    • /
    • pp.157-164
    • /
    • 2010
  • A marine alga, Spirulina maxima, was extracted under high pressure and low temperature conditions at 500 MPa and $60^{\circ}C$ for 5 and 10 min. A high pressure of 500 MPa was applied to improve process yields because of low temperature extraction. This method resulted in highest higher extraction yield of 26.1% (w/w) in comparison to those results obtained from conventional extraction methods which produced a yield of 17.6% (w/w) from water. The extracts from this process also showed 19% of low cytotoxicity against human normal fibroblast cells in adding 1.0 mg/ml of the highest concentration. The crude extract significantly reduced the production of Prostaglandin $E_2$ ($PGE_2$) from CCD-986sk cells and increased nitric oxide production by macrophages. These higher activities of enhancing skin immune functions were found to have high antioxidant extract properties, like a 98% increase in DPPH radical scavenging activity. The extracts from the high pressure process showed a higher elution of active components than other processes and generated new compounds based on HPLC analysis. This clearly indicates that the extracts from high pressure and low temperature conditions have higher skin immune activation properties that have not been previously reported.

Synthesis and electrochemical properties of $LiCoO_2$ powders by urea hydrolysis (우레아 가수분해법에 의한 리튬이차전지용 $LiCoO_2$의 합성과 전기화학적 특성)

  • Jung Yong Hee;Kang Kui Won;Cheong Hun;Paik Ungyu;Hwang Kwang Taek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.6
    • /
    • pp.267-271
    • /
    • 2004
  • Lithium cobalt oxide $(LiCoO_2)$ cathode powders for rechargeable battery have been successfully prepared using urea hydrolysis method. The obtained hydrolysis-derived precursors with different Li/Co molar ratio were calcined at various temperatures. Low temperature phase $(LT-LiCoO_2)$ and high temperature phase $(HT-LiCoO_2)$ were obtained after calcination at $500^{\circ}C$ for 2 hr, and phase transformation from $LT-LiCoO_2{\;}to{\;}HT-LiCoO_2$ was completely occurred over $700^{\circ}C$. The layered structure of $LiCoO_2$ was well developed with a rise in the calcination temperature. Charge-discharge test show that the lithium cobalt oxide with 1.2 molar ratio prepared at $800^{\circ}C$ has an initial discharge capacity as high as 152 mAh/g, and the relatively stable cycling characteristic with 9.2 % of capacity fading was obtained after 40th charge-discharge test.

Formation of ultra-shallow $p^+-n$ junction through the control of ion implantation-induced defects in silicon substrate (이온 주입 공정시 발생한 실리콘 내 결함의 제어를 통한 $p^+-n$ 초 저접합 형성 방법)

  • 이길호;김종철
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.4
    • /
    • pp.326-336
    • /
    • 1997
  • From the concept that the ion implantation-induced defect is one of the major factors in determining source/drain junction characteristics, high quality ultra-shallow $p^+$-n junctions were formed through the control of ion implantation-induced defects in silicon substrate. In conventional process of the junction formation. $p^+$ source/drain junctions have been formed by $^{49}BF_2^+$ ion implantation followed by the deposition of TEOS(Tetra-Ethyl-Ortho-Silicate) and BPSG(Boro-Phospho-Silicate-Glass) films and subsequent furnace annealing for BPSG reflow. Instead of the conventional process, we proposed a series of new processes for shallow junction formation, which includes the additional low temperature RTA prior to furnace annealing, $^{49}BF_2^+/^{11}B^+$ mixed ion implantation, and the screen oxide removal after ion implantation and subsequent deposition of MTO (Medium Temperature CVD oxide) as an interlayer dielectric. These processes were suggested to enhance the removal of ion implantation-induced defects, resulting in forming high quality shallow junctions.

  • PDF

Effect of deposition parameters on structure of ZnO films deposited by an DC Arc Plasmatron

  • Penkov, Oleksiy V.;Chun, Se-Min;Kang, In-Jae;Lee, Heon-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.255-255
    • /
    • 2011
  • Zinc oxide based thin films have been extensively studied in recent several years because they have very interesting properties and zinc oxide is non-poisonous, abundant and cheap material. ZnO films are employed in different applications like transparent conductive layers in solar cells, protective coatings and so on. Wide industrial application of the ZnO films requires of development of cheap, effective and scalable technology. Typically used technologies don't completely satisfy the industrial requirements. In the present work, we studied effect of the deposition parameters on the structure and properties of ZnO films deposited by DC arc plasmatron. The varied parameters were gas flow rates, precursor composition, substrate temperature and post-deposition annealing temperature. Vapor of Zinc acetylacetone was used as source materials, oxygen was used as working gas and argon was used as the cathode protective gas and a transport gas for the vapor. The plasmatron power was varied in the range of 700-1500 watts. Flow rate of the gases and substrate temperature rate were varied in the wide range to optimize the properties of the deposited coatings. After deposition films were annealed in the hydrogen atmosphere in the wide range of temperatures. Structure of coatings was investigated using XRD and SEM. Chemical composition was analyzed using x-ray photoelectron spectroscopy. Sheet conductivity was measured by 4-point probe method. Optical properties of the transparent ZnO-based coatings were studied by the spectroscopy. It was shown that deposition by a DC Arc plasmatron can be used for low-cost production of zinc oxide films with good optical and electrical properties. Increasing of the oxygen content in the gas mixture during deposition allow to obtain high-resistive protective and insulation coatings with high adhesion to the metallic surface.

  • PDF

Passivation Properties of Phosphorus doped Amorphous Silicon Layers for Tunnel Oxide Carrier Selective Contact Solar Cell (터널 산화막 전하선택형 태양전지를 위한 인 도핑된 비정질 실리콘 박막의 패시베이션 특성 연구)

  • Lee, Changhyun;Park, Hyunjung;Song, Hoyoung;Lee, Hyunju;Ohshita, Yoshio;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.7 no.4
    • /
    • pp.125-129
    • /
    • 2019
  • Recently, carrier-selective contact solar cells have attracted much interests because of its high efficiency with low recombination current density. In this study, we investigated the effect of phosphorus doped amorphous silicon layer's characteristics on the passivation properties of tunnel oxide passivated carrier-selective contact solar cells. We fabricated symmetric structure sample with poly-Si/SiOx/c-Si by deposition of phosphorus doped amorphous silicon layer on the silicon oxide with subsequent annealing and hydrogenation process. We varied deposition temperature, deposition thickness, and annealing conditions, and blistering, lifetime and passivation quality was evaluated. The result showed that blistering can be controlled by deposition temperature, and passivation quality can be improved by controlling annealing conditions. Finally, we achieved blistering-free electron carrier-selective contact with 730mV of i-Voc, and cell-like structure consisted of front boron emitter and rear passivated contact showed 682mV i-Voc.

Catalyst-aided Regeneration of Amine Solvents for Efficient CO2 Capture Process

  • Bhatti, Umair H.;Sultan, Haider;Cho, Jin Soo;Nam, Sungchan;Park, Sung Youl;Baek, Il Hyun
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.8-12
    • /
    • 2019
  • Thermal amine scrubbing is the most advanced CO2 capture technique but its largescale application is hindered due to the large heat requirement during solvent regeneration step. The addition of a solid metal oxide catalysts can optimize the CO2 desorption rate and thus minimize the energy consumption. Herein, we evaluate the solvent regeneration performance of Monoethanolamine (MEA) and Diethanolamine (DEA) solvents without and with two metal oxide catalysts (TiO2 and V2O5) within a temperature range of 40-86℃. The solvent regeneration performance was evaluated in terms of CO2 desorption rate and overall amount of CO2 desorbed during the experiments. Both catalysts improved the solvent regeneration performance by desorbing greater amounts of CO2 with higher CO2 desorption rates at low temperature. Improvements of 86% and 50% in the CO2 desorption rate were made by the catalysts for MEA and DEA solvents, respectively. The total amount of the desorbed CO2 also improved by 17% and 13% from MEA and DEA solvents, respectively. The metal oxide catalyst-aided regeneration of amine solutions can be a new approach to minimize the heat requirement during solvent regeneration and thus can remove a primary shortfall of this technology.

Fabrication of anodic aluminum oxide nanotemplate using sputtered aluminum thin film (스퍼터 증착된 알루미늄 박막을 이용한 양극산화 알루미늄 나노템플레이트 제조)

  • Lee, Jae-Hyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.923-928
    • /
    • 2010
  • Anodic aluminum oxide (AAO) nanotemplates for nano electronic device applications have been attracting increasing interest because of ease of fabrication, low cost process, and possible fabrication in large area. The size and density of the nanostructured materials can be controlled by changing the pore diameter and the pole density of AAO nanotemplate. In this paper, nano porous alumina films AAO nanotemplate was fabricated by second anodization method using sputterd Al films. In addition, effects of electrolyte temperature and anodization voltate on the microstructure of porous alumina films were investigated. As the electrolyte temperature was increased from $8^{\circ}C$ to $20^{\circ}C$, the growth rate of nanoporous alumina films was increased from 86.2 nm/min to 179.5 nm/min. The AAO nanotemplate fabricated with optimal condition had the mean pore diameter of 70 nm and the pore depth of $1\;{\mu}m$.

The Effect of Zn/Sn Different Raito of InZnSnO Thin Films Prepared by RF Magnetron Sputtering (RF 마그네트론 스퍼터를 사용하여 증착한 IZTO 박막의 Zn/Sn 비율에 따른 효과)

  • Kim, Ki Hwan;Putri, Maryane;Koo, Chang Young;Lee, Jung-A;Kim, Jeong-Joo;Lee, Hee Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.8
    • /
    • pp.591-596
    • /
    • 2013
  • Indium Zinc Tin Oxide (IZTO) thin films were developed as an alternative to Indium Tin Oxide (ITO) thin films. ITO material which has been acknowledged with its low resistivity and optical transparency of 85-90% has been used as major transparent conducting oxide (TCO) materials. However, due to the limited source, high price, and instability problems at high temperature of indium, many researches has been focused on indium-saving TCO materials. Mason Group of Northwestern University was reported to expand the solubility limit up to 40% by co-doping with 1:1 ratio of $Zn^{+2}$ and $Sn^{+4}$ ions. In this study, the properties of IZTO thin films corresponding to Zn/Sn different ratio were investigated. In addition, the effect of substrate temperature variable to the structural, optical and electrical properties of IZTO thin films was investigated.

Transfer of Heat-treated ZnO Thin-film Plastic Substrates for Transparent and Flexible Thin-film Transistors (투명 유연 박막 트랜지스터의 구현을 위한 열처리된 산화아연 박막의 전사방법 개발)

  • Kwon, Soon Yeol;Jung, Dong Geon;Choi, Young Chan;Lee, Jae Yong;Kong, Seong Ho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.182-185
    • /
    • 2018
  • Zinc oxide (ZnO) thin films have the advantages of growing at a low temperature and obtaining high charge mobility (carrier mobility) [1]. Furthermore, the zinc oxide thin film can be used to control application resistance depending on its oxygen content. ZnO has the desired physical properties, a transparent nature, with a flexible display that makes it ideal for use as a thin-film transistor. Though these transparent flexible thin-film transistors can be manufactured in various manners, manufacturing large-area transistors using a solution process is easier owing to the low cost and flexible substrate. The advantage of being able to process at low temperatures has been attracting attention as a preferred method. However, in the case of a thin-film transistor fabricated through a solution process, it is reported that charge mobility is lower. To improve upon this, a method of improving the crystallinity through heat treatment and increasing electron mobility has been reported. However, as the heat treatment temperature is relatively high at $500^{\circ}C$, an application where a flexible substrate is absent would be more suitable.

Development of Process Technology for Low Pressure Vaccum Carburizing (저압식 진공 침탄(LPC) 열처리 공정 기술 개발)

  • Dong, Sang-Keun;Yang, Jae-Bok
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.231-237
    • /
    • 2004
  • Vacuum carburizing continues to gain acceptance as an alternative to atmosphere carburizing particularly in the car industry. The advantages of low-pressure carburization over atmospheric gas carburization is not only the creation of a surface entirely free of oxide and the environmentally friendly nature of these methods but also an improvement in deformation behaviour achieved by combining carburization with gas quenching, a reduction in batch times by increasing the carburization temperature, low gas and energy consumption and the prevention of soot to a large extent. In present study, an improved vacuum carburizing method is provided which is effective to deposit carbon in the surface of materials and to reduce cycle time. Also LPC process simulator was made to optimize to process controls parameters such as pulse/pause cycles of pressure pattern, temperature, carburizing time, diffusion time. The carburizing process was simulated by a diffusion calculation program, where as the model parameters are proposed with help the experimental results and allows the control of the carburizing process with good accordance to the practical results. Thus it can be concluded that LPC process control method based on the theoretical simulation and experimental datas appears to provide a reasonable tool for prototype LPC system.

  • PDF