• Title/Summary/Keyword: low-temperature oxide

Search Result 1,089, Processing Time 0.024 seconds

Synthesis and Characterization of $In_2O_3$ Nanowires in a Wet Oxidizing Environment (습식 산화 분위기에서의 산화 인듐 나노선의 합성 및 구조적 특성)

  • Jeong, Jong-Seok;Kim, Young-Heon;Lee, Jeong-Yong
    • Applied Microscopy
    • /
    • v.33 no.1
    • /
    • pp.17-23
    • /
    • 2003
  • Indium oxide ($In_2O_3$) nanowires were successfully synthesized by a simple reaction in a wet oxidizing environment at low temperature without metal catalyst. The nanowires were characterized by an x-ray diffraction (XRD), a scanning electron microscopy (SEM) equipped with an energy dispersive spectrometry (EDS), and a transmission electron microscopy (TEM). It was shown that the $In_2O_3$ nanowires were two types of morphology, uniform nanowires and nanowires containing $In_2O_3$ nanoparticles in its stem. It was found that lengths of the nanowires were ranges of several micrometers and their diameters were around $10{\sim}250$ nm. The growth direction of the nanowires was investigated and their growth mechanism is also discussed.

Characteristics of IZO/Ag/IZO Multilayer Electrode Grown by Roll-to-roll Sputtering for Touch Screen Panel

  • Cho, Chung-Ki;Bae, Jin-Ho;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.125-125
    • /
    • 2011
  • In this study, we investigated the electrical, optical, structural, and surface properties of indium zinc oxide (IZO)/Ag/IZO multilayer electrode grown by specially designed roll-to-roll sputtering system using the flexible substrate. By the continuous roll-to-roll sputtering of the bottom IZO, Ag, and top IZO layers at room temperature, they were able to fabricate a high quality IZO/Ag/IZO multilayer electrode. At optimized conditions, the bottom IZO layer (40 nm) was deposited on a flexible substrate. After deposition of the Bottom IZO layer, Ag layer was deposited onto the bottom IZO film as a function of DC power (200~500 W). Subsequently, the top IZO layer was deposited onto the Ag layer at identical deposition conditions to the bottom IZO layer (40 nm). We investigated the characteristics of IZO/Ag/IZO multilayer electrode as a function of Ag thickness. It was found that the electrical and optical properties of IZO/Ag/IZO multilayer electrode was mainly affected thickness of the Ag layer at optimized condition. In case of IZO/Ag/IZO multilayer electrode with the Ag power (350W), it exhibited a low sheet resistance of 7.1 ohm/square and a high transparency of 86.4%. Furthermore, we fabricated the touch screen panel using the IZO/Ag/IZO multilayer electrode, which demonstrate the possibility of the IZO/Ag/IZO multilayer electrode grown by roll-to-roll sputtering system as a transparent conducting layer in the touch screen panel.

  • PDF

Fabrication of SOI Structures with Buried Cavities for Microsystems SDB and Electrochemical Etch-stop (SDB와 전기화학적 식각정지에 의한 마이크로 시스템용 매몰 공동을 갖는 SOI 구조의 제조)

  • Chung, Gwiy-Sang;Kang, Kyung-Doo;Choi, Sung-Kyu
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.54-59
    • /
    • 2002
  • This paper describes a new process technique for batch process of SOI(Si-on-Insulator) structures with buried cavities for MEMS(Micro Electro Mechanical System) applications by SDB(Si-wafer Direct Bonding) technology and electrochemical etch-stop. A low-cost electrochemical etch-stop method is used to control accurately the thickness of SOI. The cavities were made on the upper handling wafer by Si anisotropic etching. Two wafers are bonded with an intermediate insulating oxide layer. After high-temperature annealing($1000^{\circ}C$, 60 min), the SDB SOI structure with buried cavities was thinned by electrochemical etch-stop. The surface of the fabricated SDB SOI structure have more roughness that of lapping and polishing by mechanical method. This SDB SOI structure with buried cavities will provide a powerful and versatile substrate for novel microsensors arid microactuators.

Oxide semiconductor thin film transistors for next generation displays

  • Park, Jin-Seong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.60.2-60.2
    • /
    • 2012
  • 기술의 발전이 비약적으로 성장하면서, 소비자의 요구는 빠르게 변하고 있다. 전자 소자를 응용한 제품 시장은 매해를 거듭할 수록 빠른 속도로 성능을 향상시키고 있다. 이에 따라 디스플레이 시장에서 가장 큰 관심은 작은 화면에서도 높은 해상도를 요구하고, 수광형의 구동방식이 아닌 능동형 구동방식을 갖는 AMOLED (Active Matrix Organic Light Emitted Diode)를 선호하고 있으며, 빠른 응답속도 기반을 갖는 표시소자를 요구하고 있다. 제품 생산자들의 고민은 기존의 비정질 실리콘 기반의 LCD (Liquid crystal display) 구동소자와 공정을 이용하여 소비자의 욕구에 접근하기가 점점 어려워지고 있다. 최근 이러한 문제점을 해결하고자 하는 노력들중에서 산화물 반도체 재료와 이를 이용한 박막 트랜지스터 개발이 큰 관심을 갖고 있다. 최근 InGaZnO 산화물 반도체 재료는 기존의 비정질 실리콘 반도체 재료 보다 높은 전계 이동도(> $10cm^2/V.s$)를 보이고 있으며, 비정질 실리콘 박막 트랜지스터의 구조에서 산화물 반도체 재료의 대체만으로 효과가 보일 수 있어서 큰 연구가 진행되어져 왔다. 하지만, InGaZnO 산화물 박막 트랜지스터에 대한 소자를 AMOLED에 적용할 때, 기존의 LTPS (low temperature poly-slicon)에서는 발견되지 않았던 소자의 전계신뢰성과 이동도 한계가 문제로 제기되었다. 또한, Indium이라는 희소원소의 사용은 향후 공정 단가와 희소 물질에 대한 위협등에 의하여 새로운 산화물 반도체 재료에 대한 요구와 관심이 발생하고 있다. 본 발표에서는 기존의 산화물 반도체 재료에 대한 차세대 디스플레이인 AMOLED와 유연 디스플레이에 대한 응용 가능성을 발표할 예정이다. 또한 산화물 반도체 재료의 신뢰성 문제에 대한 해결방법으로 신규 산화물 반도체 재료에 대한 연구 방향과 indium-free 계열을 이용한 저원가 산화물 반도체 연구에 대하여 소개할 예정이다. 앞으로 산화물 반도체 재료에 대한 연구와 응용은 기존의 실리콘 반도체 틀을 벗어난 새로운 응용분야를 열어줄 수 있을 것으로 기대하고 있으며, 그 기대에 대한 몇가지 예를 통하여 재료와 소자의 응용 가능성을 논의할 예정이다.

  • PDF

Preparation and Characteristics of $Y_2O_3-CeO_2-ZrO_2$Structural Ceramics ; I. Synthesis and Sinterability of Powder ($Y_2O_3-CeO_2-ZrO_2$ 구조세라믹스의 제조 및 특성 : I 분말의 합성 및 소결성)

  • 오혁상;이윤복;김영우;오기동;박흥채
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.1057-1063
    • /
    • 1996
  • Y2O3-CeO2-ZrO2 powders were prepared from water-soluble salts using a coprecipitation method. The forming process of oxide and the characteristics of the calcined powders treated in different drying conditions were investigated. The oxidation was occurred at the temperature of around 40$0^{\circ}C$ and the main crystallization of ZrO2 around $600^{\circ}C$. On calcination at $600^{\circ}C$ heating lamp-dried powders consisted of agglomerates of globular morphology with average agglomerate size of 2.27${\mu}{\textrm}{m}$ and specific surface area of 68.3m2/g and spray dried powders contained dense spheric particles with average agglomerate size of 1.35${\mu}{\textrm}{m}$ and specific surface area of 11.0m2/g which exhibited low agglomeration tendency. Removal of the water by a freeze-drying technique produced calcined powders containing flake-like secondary particle structures with wide agglomerate size distri-bution of 0.1-60${\mu}{\textrm}{m}$ and specific surface area of 24.5${\mu}{\textrm}{m}$. The 20 MPa-pressed density (36.8-41.4% T,D) of calcined powders did not nealy depend on drying methods whilst compaction ratio of calcined powders derived from freeze-drying was the highest ( 6.24) among three drying methods. On continuous heating up to 150$0^{\circ}C$ the sinterability of calcined powders derived from heating lamp-drying was superior to those derived from spray-and freeze-drying. The final sintered density of calcined powders was the highest (96% T,D at 150$0^{\circ}C$) in case of heating lamp-drying.

  • PDF

Effects of $N_2O$/$SiH_4$Flow Ratio and RF Power on Properties of $SiO_2$Thick Films Deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD법에 의해 증착된 $SiO_2$후막 특성에서 $N_2O$/$SiH_4$Flow Ratio와 RF Power가 미치는 영향)

  • 조성민;김용탁;서용곤;임영민;윤대호
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.1037-1041
    • /
    • 2001
  • Silicon diosixde thick film using silica optical waveguide cladding was fabricated by Plasma Enhanced Chemical Vapor Deposition (PECVD) method, at a low temperature (32$0^{\circ}C$) and from (SiH$_4$+$N_2$O) gas mixtures. The effects of deposition parameters on properties of SiO$_2$thick films were investigated by variation of $N_2$O/SiH$_4$flow ratio and RF power. As the $N_2$O/SiH$_4$flow ratio decreased, deposition rate increased from 2.9${\mu}{\textrm}{m}$/h to maximum 10.1${\mu}{\textrm}{m}$/h. As the RF power increased from 60 W to 120 W, deposition rate increased (5.2~6.7 ${\mu}{\textrm}{m}$/h) and refractive index approached at thermally grown silicon dioxide (n=1.46).

  • PDF

he deposition and analysis of ITO thin film by DC magnetron sputter at room temperature (DC 마그네트론 스펏터를 이용한 ITO 박막의 실온 증착 및 특성 분석)

  • Kim, Howoon;Yun, Jung-Oh
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.59-66
    • /
    • 2020
  • In this study, the characteristics of ITO thin film was investigated to finding a low cost and highly transparent electrodes for display of mobile communication devices. The ITO film was deposited by DC magnetron sputter. The experimental conditions were changed as follows: 1. ambient pressure changed 1 to 3 mTorr with 1mTorr step, 2. bias electric voltage changed with 10V step. The chamber was pumped out by rotary pump until 10-3Torr then the diffusion pump was used to lower the pressure of 10-6Torr. The results shows us the film growth was obvious when the bias voltage was larger than 300V, but the overall thickness tendency was existed: the more voltage is the thicker thickness. At 330V bias voltage condition, the deposition rate was the largest and apparent grain was showed.

The Characteristics of Mg0.1Zn0.9O Thin Films on PES Substrate According to Fabricated Conditions by PLD (PLD법으로 PES 기판 위에 제작된 Mg0.1Zn0.9O 박막의 제작 조건에 따른 특성)

  • Kim, Sang-Hyun;Lee, Hyun-Min;Jang, NakWon;Park, Mi-Seon;Lee, Won-Jae;Kim, Hong-Seung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.8
    • /
    • pp.602-607
    • /
    • 2013
  • Concern for the TOS (Transparent Oxide Semiconductor) is increasing with the recent increase in interest for flexible device. Especially MgZnO has attracted a lot of attention. $Mg_xZn_{1-x}O$, which ZnO-based wideband-gap alloys is tuneable the band-gap ranges from 3.36 eV to 7.8 eV. In particular, the flexible substrate, the crystal structure of the amorphous as well as the surface morphology is not good. So research of MgZnO thin films growth on flexible substrate is essential. Therefore, in this study, we studied on the effects of the oxygen partial pressure on the structural and crystalline of $Mg_{0.1}Zn_{0.9}O$ thin films. MgZnO thin films were deposited on PES substrate by using pulsed laser deposition. We used XRD and AFM in order to observe the structural characteristics of MgZnO thin films. UV-visible spectrophotometer was used to get the band gap and transmittance. Crystallization was done at a low oxygen partial pressure. The crystallinity of MgZnO thin films with increasing temperature was improved, Grain size and RMS of the films were increased. MgZnO thin films showed high transmittance over 80% in the visible region.

Effect of Water Addition on Activity of Gold Catalysts Supported on Metal Oxide at Low Temperature CO Oxidation (일산화탄소 저온 산화에서 금속산화물에 담지된 금촉매의 활성에 미치는 수분첨가의 영향)

  • Ahn, Ho-Geun;Kim, Ki-Joong;Chung, Min-Chul
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.720-725
    • /
    • 2011
  • Gold catalysts supported on metal-oxides were prepared by co-precipitation using the various metal nitrates and chloroauric acid as precursors, and effect of water addition on the catalytic activity in CO oxidation was investigated. Among the various supported gold catalysts, Au/$Co_{3}O_{4}$ and Au/ZnO catalysts showed the excellent activity for CO oxidation. Water in the reactant gas had a negative effect on the oxidation activity over Au/$Co_{3}O_{4}$ catalysts and a positive effect on that over Au/ZnO, which means the activity depends strongly on the nature of support. It was also confirmed that no significant change in the particle size of gold was observed after reaction both in dry and wet conditions. This fact suggested that the deactivated catalyst due to a carbonate species could be regenerated by water addition in the reactant gas.

A Study on the Optical and Electrical Properties of Ga-doped ZnO Films for Opto-electronic Devices (광전소자 응용을 위한 Ga가 첨가된 ZnO 박막의 광학적 및 전기적 특성 연구)

  • Gil, Byung-Woo;Lee, Seong-Eui;Lee, Hee-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.303-308
    • /
    • 2011
  • The Gallium-doped ZnO(GZO) film deposited at a temperature of $200^{\circ}C$ and a pressure of 10 mtorr has an optical transmittance of 89.0% and a resistivity of $2.0\;m{\Omega}{\cdot}cm$ because of its high crystallinity. Effect of $Al_2O_3$ oxide buffer layers on the optical and electrical properties of sputtered ZnO films were intensively investigated for developing the electrodes of opto-electronic devices which demanded high optical transmittance and low resistivity. The use of $Al_2O_3$ buffer layer could increase optical transmittance of GZO film to 90.7% at a wavelength of 550 nm by controlling optical spectrum. Resistivity of deposited GZO films were much dependent on the deposition condition of $O_2/(Ar+O_2)$ flow rate ratio during the buffer layer deposition. It is considered that the $Al_2O_3$ buffer layer could increase the carrier concentration of the GZO films by doping effect of diffused Al atoms through the rough interface.