DOI QR코드

DOI QR Code

Effect of Water Addition on Activity of Gold Catalysts Supported on Metal Oxide at Low Temperature CO Oxidation

일산화탄소 저온 산화에서 금속산화물에 담지된 금촉매의 활성에 미치는 수분첨가의 영향

  • Ahn, Ho-Geun (Department of Chemical Engineering, Sunchon National University) ;
  • Kim, Ki-Joong (School of Chemical, Biological & Environmental Engineering) ;
  • Chung, Min-Chul (Department of Chemical Engineering, Sunchon National University)
  • 안호근 (순천대학교 화학공학과) ;
  • 김기중 (오리건 주립 대학교 화학생명환경공학부) ;
  • 정민철 (순천대학교 화학공학과)
  • Published : 2011.12.01

Abstract

Gold catalysts supported on metal-oxides were prepared by co-precipitation using the various metal nitrates and chloroauric acid as precursors, and effect of water addition on the catalytic activity in CO oxidation was investigated. Among the various supported gold catalysts, Au/$Co_{3}O_{4}$ and Au/ZnO catalysts showed the excellent activity for CO oxidation. Water in the reactant gas had a negative effect on the oxidation activity over Au/$Co_{3}O_{4}$ catalysts and a positive effect on that over Au/ZnO, which means the activity depends strongly on the nature of support. It was also confirmed that no significant change in the particle size of gold was observed after reaction both in dry and wet conditions. This fact suggested that the deactivated catalyst due to a carbonate species could be regenerated by water addition in the reactant gas.

금속질산염과 염화금산을 전구체로 사용하여 다양한 금속산화물($$Al_{2}O_{3}$, ZnO, $Fe_{2}O_{3}$, $Cr_{2}O_{3}$, $MnO_{2}$, CuO, NiO, $Co_{3}O_{4}$)에 담지된 금촉매를 공침법을 이용하여 제조한 후, 일산화탄소 산화반응에서 수분첨가의 영향을 검토하였다. 이들 중 $Co_{3}O_{4}$와 ZnO에 담지된 금촉매가 일산화탄소에 대하여 높은 활성을 보여주었다. 반응가스 중에 수분이 첨가될 때 Au/$Co_{3}O_{4}$ 촉매는 활성이 약간 감소하였으나, Au/ZnO 촉매에서는 활성이 크게 증가하여 수분에 의한 일산화탄소 산화 활성은 담체의 종류에 크게 의존함을 알 수 있었다. 반응가스 중에 포함된 수분에 관계없이 반응 전과 후의 Au(5 wt%)/ZnO 촉매의 금입자 크기는 거의 변하지 않아 활성이 감소되는 이유는 금입자들의 소결에 의한 영향보다는 카보네이트와 같은 화학종에 의해 불활성화가 일어남을 알 수 있었으며, 이 화학종은 수분의 첨가에 의해 이산화탄소로 분해되어 활성이 증가한 것으로 생각된다.

Keywords

References

  1. Bond, G. C. and Thompson, D. T., "Catalysis by Gold," Catal. Rev. Sci. Eng., 41, 319-388(1999). https://doi.org/10.1081/CR-100101171
  2. Haruta, M., Kobayashi, T., Sano, H. and Yamada, N., "Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below $0{^{\circ}C}$," Chem. Lett., 16, 405-408(1987). https://doi.org/10.1246/cl.1987.405
  3. Bond, G. C., Louis, C. and Thompson, D. T., "Catalysis by Gold- Catalytic Science Series," vol. 6, Imperial College Press, 2006.
  4. Date, M., Okumura, M., Tsubota, S. and Haruta, M., "Vital Role of Moisture in the Catalytic Activity of Supported Gold Nanoparticles," Angew. Chem. Int. Ed., 43, 2129-2131(2004). https://doi.org/10.1002/anie.200453796
  5. Date, M. and Haruta, M., "Moisture Effect on CO Oxidation over $Au/TiO_{2}$ Catalyst," J. Catal., 201, 221-224(2001). https://doi.org/10.1006/jcat.2001.3254
  6. Wang, G. Y., Zhang, W. X., Lian, H. L., Jiang, D. Z. and Wu, T. H., "Effect of Calcination Temperatures and Precipitant on the Catalytic Performance of Au/ZnO Catalysts for CO Oxidation at ambient Temperature and in Humid Circumstances," Appl. Catal. A: Gen., 239, 1-10(2003). https://doi.org/10.1016/S0926-860X(02)00098-4
  7. Izabela, D. G., Ireneusz, K. and Jacek, M. R., "Carbon Monoxide Oxidation over $Au/_{Ce1-x}Zr_{x}O_{2}$ Catalysts: Effect of Moisture Content in the Reactant Gas and Catalyst Pretreatment," Catal. Lett., 128, 297-306(2009). https://doi.org/10.1007/s10562-008-9749-1
  8. Date, M., Ichihashi, Y., Yamashita, T., Chiorino, A., Boccuzzi, F. and Haruta, M., "Performance of $Au/TiO_{2}$ Catalyst under Ambient Conditions," Catal. Today, 72, 89-94(2002). https://doi.org/10.1016/S0920-5861(01)00481-3
  9. Park, E. D. and Lee, J. S., "Effects of Pretreatment Conditions on CO Oxidation over Supported Au Catalysts," J. Catal., 186, 1-11 (1999). https://doi.org/10.1006/jcat.1999.2531
  10. Costello, C. K., Kung, M. C., Oh, H. S., Wang, Y. and Kung, H. H., "Nature of the Active Site for CO Oxidation on Highly Active $Au/Al_{2}O_{3}$," Appl. Catal. A: Gen., 232, 159-168(2002). https://doi.org/10.1016/S0926-860X(02)00092-3
  11. Date, M., Imai, H., Tsubota, S. and Haruta, M., "In Situ Measurements under Flow Condition of the CO Oxidation over Supported Gold Nanoparticles," Catal. Today, 122, 222-225(2007). https://doi.org/10.1016/j.cattod.2007.01.032
  12. Grunwaldt, J. D., Kiener, C., Wgerbauer, C. and Baiker, A., "Preparation of Supported Gold Catalysts for Low-Temperature CO Oxidation via "Size-Controlled" Gold Colloids," J. Catal., 181, 223-232(1999). https://doi.org/10.1006/jcat.1998.2298
  13. Knell, A., Barnickel, P., Baiker, A. and Wokaun, A., "CO Oxidation over $Au/ZrO_{2}$ Catalysts: Activity, Deactivation Behavior, and Reaction Mechanism," J. Catal., 137, 306-321(1992). https://doi.org/10.1016/0021-9517(92)90159-F
  14. Kim, K. J., Chung, M. C. and Ahn, H. G., "Effect of Water Addition on Catalytic Activity of Nanosized Gold Catalysts for CO Oxidation," J. Nanosci. Nanotechnol., submitted in 2010.
  15. JCPDS powder diffraction file, International centre for diffraction data, Swarthmore, PA, 1991.
  16. Birks, L. S. and Friedman, H., "Particle Size Determination from X-ray Line Broad," J. Appl. Phys., 17, 687-692(1946). https://doi.org/10.1063/1.1707771
  17. Bergeret, G. and Gallezot, P., in: Ertl, Knozinger, G. H., Weitkamp J. (Eds.), "Handbook of Heterogeneous Catalysis," VCH, Weinheim, pp. 439-462(1997).
  18. Hutchings, G. J., Siddiqui, M. R. H., Burrows, A., Kiely, C. J. and Whyman R., "High-Activity Au/CuO-ZnO Catalysts for the Oxidation of Carbon Monoxide at Ambient Temperature," J. Chem. Soc. Faraday Trans., 93, 187-188(1993).
  19. Chang, F. W., Lai, S. C. and Roselin, L. S., "Hydrogen Production by Partial Oxidation of Methanol over ZnO-Promoted $Au/Al_{2}O_{3}$ Catalysts," J. Mol. Catal. A: Chem., 282, 129-135(2008). https://doi.org/10.1016/j.molcata.2007.12.002
  20. Strunk, J., Kahler, K., Xia, X., Comotti, M., Schuth, F., Reinecke, T. and Muhler, M., "Au/ZnO as Catalyst for Methanol Synthesis: The Role of Oxygen Vancies," Appl. Catal. A: Gen., 359, 121-128(2009). https://doi.org/10.1016/j.apcata.2009.02.030
  21. Carabineiro, S. A. C., Machado, B. F., Bacsa, R. R., Serp, P., Drazic, G., Faria, J. L. and Figueiredo, J. L., "Catalytic Performance of Au/ZnO Nanocatalysts for CO Oxidation," J. Catal., 273, 191-198(2010). https://doi.org/10.1016/j.jcat.2010.05.011
  22. Boccuzzi, F., Chiorino, A., Manzoli, M., Lu, P., Akita, T., Ichikawa, S. and Haruta, M., "$Au/TiO_{2}$ Nanosized Samples: A Catalytic, TEM, and FTIR Study of the Effect of Calcination Temperature on the CO Oxidation," J. Catal., 202, 256-267(2001). https://doi.org/10.1006/jcat.2001.3290
  23. Costello, C. K., Yang, J. H., Law, H. Y., Wang, Y., Lin, J. N., Marks, L. D., Kung, M. C. and Kung, H. H., "On the Potential Role of Hydroxyl Groups in CO Oxidation over $Au/Al_{2}O_{3}$," Appl. Catal. A: Gen., 243, 15-24(2003). https://doi.org/10.1016/S0926-860X(02)00533-1
  24. Kim, D. K., Shin, C. S. and Shin, C. H., "Low Temperature CO Oxidation over $Co_{3}O_{4}/-Al_{2}O_{3}$ Catalyst," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 42, 371-374(2004).