• Title/Summary/Keyword: low-temperature crystallization

Search Result 353, Processing Time 0.025 seconds

Crystallization Behavior and Electrical Properties of BNN Thin Films by IBSD Process

  • Lou, Jun-Hui;Jang, Jae-Hoon;Lee, Hee-Young;Cho, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.960-964
    • /
    • 2004
  • [ $Ba_2NaNb_5O_{15}$ ](BNN) thin films have been prepared by the ion beam sputter deposition (IBSD) method on Pt coated Si substrate at temperature as low as $600^{\circ}C$ XRD, SEM were used to investigate the crystallization and microstructure of the films. It was found that the films were crack-free and uniform in microstructure. The electric properties of thin films were carried out by observation of D-E hysteresis loop, dielectric constant and leakage current. It was found the deposition rate strongly influenced the phase formation of the films, where the phase of $BaNb_2O_6$ was always formed when the deposition rate was high. However, the single phase (tungsten bronze structure ) BNN thin film was obtained with the deposition rate as low as $22{\AA}/min$. The remanent polarization Pr and dielectric constant are about 1-2 ${\mu}C/cm^2$ and $100\sim200$, respectively. It was also founded the electric properties of thin films were influenced by the deposition rate. The Pr and dielectric constant of films increased with the decrease of deposition rate. The effects of annealing temperature and annealing time to the crystallization behavior of films were studied. The crystallization of thin film started at about $600^{\circ}C$. The adequate crystallization was gotten at the temperature of $650^{\circ}C$ when the annealing time is 0.5 hour or at the temperature of $600^{\circ}C$ when the annealing time is long as 6 hours.

  • PDF

The Study of poly-Si Eilm Crystallized on a Mo substrate for a thin film device Application (박막소자응용을 위한 Mo 기판 위에 고온결정화된 poly-Si 박막연구)

  • 김도영;서창기;심명석;김치형;이준신
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.2
    • /
    • pp.130-135
    • /
    • 2003
  • Polycrystalline silicon thin films have been used for low cost thin film device application. However, it was very difficult to fabricate high performance poly-Si at a temperature lower than $600^{\circ}C$ for glass substrate because the crystallization process technologies like conventional solid phase crystallization (SPC) require the number of high temperature (600-$1000^{\circ}C$) process. The objective of this paper is to grow poly-Si on flexible substrate using a rapid thermal crystallization (RTC) of amorphous silicon (a-Si) layer and make the high temperature process possible on molybdenum substrate. For the high temperature poly-Si growth, we deposited the a-Si film on the molybdenum sheet having a thickness of 150 $\mu\textrm{m}$ as flexible and low cost substrate. For crystallization, the heat treatment was performed in a RTA system. The experimental results show the grain size larger than 0.5 $\mu\textrm{m}$ and conductivity of $10^{-5}$ S/cm. The a-Si was crystallized at $1050^{\circ}C$ within 3min and improved crystal volume fraction of 92 % by RTA. We have successfully achieved a field effect mobility over 67 $\textrm{cm}^2$/Vs.

Molecular Dynamics Study on External Field Induced Crystallization of Amorphous Argon Structure

  • Park, Seung-Ho;Cho, Sung-San;Lee, Joon-Sik;Choi, Young-Ki;Kwon, Oh-Myoung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.2042-2048
    • /
    • 2004
  • A molecular dynamics study has been conducted on an external-force-field-induced isothermal crystallization process of amorphous structures as a new low-temperature athermal crystallization process. An external cyclic-force field with a dc bias is imposed on molecules selected randomly in an amorphous-phase of argon. Multiple peaks smoothed out in the radial distribution functions for amorphous states appear very clearly during the crystallization process that cannot be achieved otherwise. When the amorphous material is locally exposed to an external force field, crystallization starts and propagates from the interfacial region and crystallization growth rates can be estimated.

Crystallization of Amorphous Silicon Films by Field-Aided Lateral Crystallization (FALC) technique at $350^{\circ}C$

  • Park, Kyoung-Wan;Cho, Ki-Taek;Choi, Duck-Kyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.548-551
    • /
    • 2002
  • The crystallization of amorphous silicon (a-Si) was achieved using a field aided lateral crystallization (FALC) process at 350 $^{\circ}C$. Under the influence of an electric field, Cu is found to drastically enhance the lateral crystallization velocity of a-Si. When an electric field was applied to the selectively Cu-deposited a-Si film during the heat treatment at temperature as low as 350 $^{\circ}C$, dendrite-shaped crystallization of a-Si progressed toward Cu-free region and the crystallization from negative electrode side toward positive electrode side was accelerated. We identified that 1000${\AA}$ thick a-Si film was completely crystallized by Cu-FALC process at 350 $^{\circ}C$ by TEM analysis.

  • PDF

Solid Phase Crystallization of LPCVD Amorphous Silicon Thin Films by Alternating Magnetic Flux (교번자속인가에 의한 비정질 실리콘 박막의 결정화거동에 대한 연구)

  • 송아론;박상진;박성계;남승의;김형준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.459-462
    • /
    • 2000
  • A new method for the fabrication of poly-Si films is reported using by alternating magnetic flux crystallization (AMFC) of LPCVD a-Si films. In this work we have studied the crystallization of LPCVD a-Si films by alternating magnetic flux. A-Si films were 1200$\AA$-thick deposited at 48$0^{\circ}C$ at a total pressure of 0.25Torr using Si$_2$H$_{6}$/H$_2$. After this step, these a-Si films were thermally annealed by Alternating Magnetic Flux at 43$0^{\circ}C$ for 1hours. The annealed films were characterized using X-ray diffraction (XRD), Raman Spectra, Atomic Force Microscopy(AFM). Both alternating magnetic flux crystallization and solid phase crystallization were investigated to compare enhanced crystallization a-Si. We have found that the low temperature crystallization method at 43$0^{\circ}C$ by alternating magnetic flux.x.

  • PDF

Magnetic Field-Assisted, Nickel-Induced Crystallization of Amorphous Silicon Thin Film

  • Moon, Sunwoo;Kim, Kyeonghun;Kim, Sungmin;Jang, Jinhyeok;Lee, Seungmin;Kim, Jung-Su;Kim, Donghwan;Han, Seung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.313-313
    • /
    • 2013
  • For high-performance TFT (Thin film transistor), poly-crystalline semiconductor thin film with low resistivity and high hall carrier mobility is necessary. But, conventional SPC (Solid phase crystallization) process has disadvantages in fabrication such as long annealing time in high temperature or using very expensive Excimer laser. On the contrary, MIC (Metal-induced crystallization) process enables semiconductor thin film crystallization at lower temperature in short annealing time. But, it has been known that the poly-crystalline semiconductor thin film fabricated by MIC methods, has low hall mobility due to the residual metals after crystallization process. In this study, Ni metal was shallow implanted using PIII&D (Plasma Immersion Ion Implantation & Deposition) technique instead of depositing Ni layer to reduce the Ni contamination after annealing. In addition, the effect of external magnetic field during annealing was studied to enhance the amorphous silicon thin film crystallization process. Various thin film analytical techniques such as XRD (X-Ray Diffraction), Raman spectroscopy, and XPS (X-ray Photoelectron Spectroscopy), Hall mobility measurement system were used to investigate the structure and composition of silicon thin film samples.

  • PDF

Study on Effect of Fluorine Content on the Synthesis of Machinable Glass-ceramics Based on Fluorophlogopite Crystals (플루오르함량이 Fluorophologopite 결정들을 함유하고 있는 기계 가공성 결정화유리의 합성에 미치는 영향에 관한 연구)

  • 정형진;김병호;신용규
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.4
    • /
    • pp.1-10
    • /
    • 1986
  • The crystallization behaviour and the machinability of mica glass-ceramics with the content of F1 were studied. The material was made from the $K_2O-MgO-Al_2O_3-B_2O_3-SiO_2-F$ glasses by the heattreatment at 80$0^{\circ}C$-110$0^{\circ}C$ where the content of F-1 was changed in the range from 1, 3wt% to 6.1wt%. X-ray diffraction phase analysis and optical observation were adopted to study the crystallization behaviour. The machinability was measured by a manual sawing test and MOR. The crystal phases of these glass-ceramics identified by XRD were chondrodite fluoborite and norbergite at low temperature but fluorophlogopite at high temperature. The crystallization of glasses containing 1.3wt% -2.5wt% F-1 were predominately controlled by surface crystallization while the crystallization of glasses containing 3.8 wt% -6.1wt% F-1 were controlled by volume crystallization. Among the test the best machinability and strength value were obtained from those specimens contained fluoride 4.2wt% -4.4wt% and when the heattreatment was performed at 95$0^{\circ}C$-110$0^{\circ}C$ for 2 hours.

  • PDF

RTA Post-annealing Effect on Poly-Si Thin Film Transistors Fabricated by Metal Induced Lateral Crystallization (금속 유도 측면 결정화를 이용한 박막 트랜지스터의 RTA 후속열처리 효과)

  • 최진영;윤여건;주승기
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.274-277
    • /
    • 2000
  • Thin Film Transistor(TFTs) were fabricated from poly-Si crystallized by a two-step annealing process on glass substrates. The combination of low-temperature(500$^{\circ}C$) Metal-Induced Lateral Crystallization(MILC) furnace annealing and high -temperature (700$^{\circ}C$) rapid thermal annealing leads to the improvement of the material quality The TFTs measured with this two-step annealing material exhibit better characteristics than those obtained by using conventional MILC furnace annealing.

  • PDF

Crystallization of Ferrite Powder Using Ultrasonic Wave (초음파를 이용한 페라이트 분말의 결정화)

  • 신현창;오재희;이재춘;최승철
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.181-185
    • /
    • 2000
  • A new technique capable of accelerating the crystallization of ferrite powder at low temperature is developed. Effects of the ultrasonic waves on the crystallization were studied for ferrite powders prepared using the co-precipitation method. The crystallization of the ferrite powders exposed to the ultrasonic waves were characterized by the XRD. The amorphous ferrite powders prepared using the co-precipitation method were crystallized as a result of the exposure to the ultrasonic waves for 5h and the crystallization of the ferrite powders became more enhanced in proportion to the time exposed. The ferrite powder exposed to the ultrasonic waves for 25h had higher crystallinity a larger specific surface area than the ferrite powder calcined at 500$^{\circ}C$ for 2h.

  • PDF