• Title/Summary/Keyword: low-tech

Search Result 709, Processing Time 0.038 seconds

Does the Differential Effects of R&D Expenditure and Patents on Firm-value Exits between High-tech and Low-tech Industries? (산업 특성에 따른 연구개발비 지출과 특허취득이 기업가치에 차별적으로 반응하는가?)

  • Jeon, Sung Il;Lee, Kise;Yang, Hae Myun
    • Knowledge Management Research
    • /
    • v.11 no.3
    • /
    • pp.1-11
    • /
    • 2010
  • The importance of intangible assets have increased unprecedentedly with the advent of the knowledge-based society. Investment in R&D has contributed to the rise of productivity and firm-value in the capital markets. but it is very difficult to determine the economic benefits of R&D investment, due to elusive link between time requirements and the realization of firm value from R&D investment. This study examines the differential effects of R&D expenditure and patents on firm-value by industry. Patents are intangible, proprietary rights that develops new products, plays a crucial role in market competition and results in research and development activities. If firms get patents, their R&D expenditure is assumed to be successful. The study analyzes whether successful R&D expenditure has a significant effect on the firm-value. The study considers two industries : high-tech industries and low-tech industries. These industries are expected to have different effect on R&D expenditure and firm-vale. The results of the study indicate that the successful R&D expenditure increased the firm-value. Successful R&D expenditure in high-tech industries more increased the firm-value more than that in low-tech industries.

  • PDF

Web-Based Language Test: Present and Future

  • Chong, Larry-Dwan
    • English Language & Literature Teaching
    • /
    • v.7 no.2
    • /
    • pp.17-36
    • /
    • 2002
  • This article begins by exploring recent developments in the use of the world wide webs in language testing about what a Web-based language test (WBT) is and how they are used in language testing. After a brief review of computer-based testing, WBTs are defined and categorized as low-tech or high tech. Since low-tech tests are the more feasible, they will constitute the focus of this paper. Next, item types for low-tech WBTs are described, and validation concerns that are specific to WBTs are discussed. After a brief overview of the combination of computer-adaptive and Web-based tests, the general advantages as well as design and implementation issues of WBTs are considered before examining the role that testing consequences play in deciding whether a WBT is an appropriate assessment instrument. It is argued that WBTs are most appropriate in low-stakes testing situations; but with proper supervision, they can also be used in medium-stakes situations although they are not generally recommended for high-stakes situations. Some possible ideas for future research are suggested.(169)

  • PDF

Explainable radionuclide identification algorithm based on the convolutional neural network and class activation mapping

  • Yu Wang;Qingxu Yao;Quanhu Zhang;He Zhang;Yunfeng Lu;Qimeng Fan;Nan Jiang;Wangtao Yu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4684-4692
    • /
    • 2022
  • Radionuclide identification is an important part of the nuclear material identification system. The development of artificial intelligence and machine learning has made nuclide identification rapid and automatic. However, many methods directly use existing deep learning models to analyze the gamma-ray spectrum, which lacks interpretability for researchers. This study proposes an explainable radionuclide identification algorithm based on the convolutional neural network and class activation mapping. This method shows the area of interest of the neural network on the gamma-ray spectrum by generating a class activation map. We analyzed the class activation map of the gamma-ray spectrum of different types, different gross counts, and different signal-to-noise ratios. The results show that the convolutional neural network attempted to learn the relationship between the input gamma-ray spectrum and the nuclide type, and could identify the nuclide based on the photoelectric peak and Compton edge. Furthermore, the results explain why the neural network could identify gamma-ray spectra with low counts and low signal-to-noise ratios. Thus, the findings improve researchers' confidence in the ability of neural networks to identify nuclides and promote the application of artificial intelligence methods in the field of nuclide identification.

A Study on Performance Characteristics of PEMFC with Thermal Variation (온도에 따른 고분자 전해질형 연료전지시스템의 출력 특성 연구)

  • Park, Se-Joon;Shin, Young-Sik;Jeong, Seong-Chan;Choi, Jeong-Sik;Cha, In-Su
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.212-214
    • /
    • 2009
  • The polymer electrolyte membrane fuel cell(PEMFC) with the advantages of low-operating temperature, high current density, low cost and volume, fast start-up ability, and suitability for discontinuous operation becomes the most reasonable and attractive power system for transportation vehicle and micro-grid power plant in a household. 200W PEMFC(Polymer electrolyte membrane fuel cell) system applied to middle and small-scaled micro-grid power system was constructed by this study, then the electrical characteristics and diagnosis of the fuel cell were analyzed with thermal variation.

  • PDF

A novel reconstruction algorithm based on density clustering for cosmic-ray muon scattering inspection

  • Hou, Linjun;Zhang, Quanhu;Yang, Jianqing;Cai, Xingfu;Yao, Qingxu;Huo, Yonggang;Chen, Qifan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2348-2356
    • /
    • 2021
  • As a relatively new radiation imaging method, the cosmic-ray muon scattering imaging technology can be used to prevent nuclear smuggling and is of considerable significance to nuclear safety. Proposed in this paper is a new reconstruction algorithm based on density clustering, aiming to improve inspection quality with better performance. Firstly, this new algorithm is introduced in detail. Then in order to eliminate the inequity of the density threshold caused by the heterogeneity of the muon flux in different positions, a new flux correction method is proposed. Finally, three groups of simulation experiments are carried out with the help of Geant4 toolkit to optimize the algorithm parameters, verify the correction method and test the inspection quality under shielded condition, and compare this algorithm with another common inspection algorithm under different conditions. The results show that this algorithm can effectively identify and locate nuclear material with low misjudging and missing rates even when there is shielding and momentum precision is low, and the threshold correcting method is universally effective for density clustering algorithms.

A case for productivity improvement by time study in high tech industry (하이테크 부품산업에서 작업분석/실행을 통한 생산성 향상의 프로젝트 방법론 연구)

  • Lee, Won-Jae;kim, Joong-Hoi;Kang, Sung-Woo;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.1
    • /
    • pp.225-230
    • /
    • 2015
  • Productivity is the essential comparative advantage in high tech industry company in 21 century. These company endless endeavor for low cost production. Low cost production can be led by low facility operation cost and low labor cost. But reducing facility operation cost arise much investment. Thus many high tech company drive reduction of labor cost. These article suggest model for reducing labor cost and prove a effect by example of some company.

Stopband-Extended and Size-Miniaturized Low-Pass Filter with Three Transmission Zeros

  • Li, Lin;Bao, Jia;Du, Jing-Jing;Wang, Yaming
    • ETRI Journal
    • /
    • v.36 no.2
    • /
    • pp.286-292
    • /
    • 2014
  • This paper presents a compact structure composed of an upper high-impedance transmission line, a middle extended parallel coupled line, and a pair of inter-coupled symmetrical stepped impedance stubs. Detailed investigation into this structure based on an equivalent circuit analysis reveals that this proposed structure exhibits a quasi-elliptic low-pass filtering response with three transmission zeros. Moreover, the positions of the three transmission zeros can be tuned and reallocated flexibly by choosing the proper circuit parameters. Finally, the design concept is validated through the design, fabrication, and measurement of two exemplary low-pass filters (LPFs) with one single unit and two cascaded asymmetric units. The measured results agree well with the simulated results. In addition, in the range of $1.42f_c$ to $7.03f_c$, the fabricated quasi-elliptic LPFs experimentally demonstrate a very wide upper-stopband of 20 dB using a compact size of only $0.0089{\lambda}_g{^2}$, where ${\lambda}_g$ is the guided wavelength of a $50{\Omega}$ transmission line at the central frequency.

A New Way to Prepare MoO3/C as Anode of Lithium ion Battery for Enhancing the Electrochemical Performance at Room Temperature

  • Yu, Zhian;Jiang, Hongying;Gu, Dawei;Li, Jishu;Wang, Lei;Shen, Linjiang
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.170-178
    • /
    • 2016
  • Composited molybdenum oxide and amorphous carbon (MoO3/C) as anode material for lithium ion batteries has been successfully synthesized by calcining polyaniline (PANI) doped with ammonium heptamolybdate tetrahydrate (AMo). The as prepared electrode material was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and field emission scanning electron microscopy (FE-SEM). The electrochemical performance of the anode was investigated by galvanostatic charge/discharge, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The MoO3/C shows higher specific capacity, better cyclic performance and rate performance than pristine MoO3 at room temperature. The electrochemical of MoO3/C properties at various temperatures were also investigated. At elevated temperature, MoO3/C exhibited higher specific capacity but suffered rapidly declines. While at low temperature, the electrochemical performance was mainly limited by the low kinetics of lithium ion diffusion and the high charge transfer resistance.

Structural Analysis and Dynamic Characteristics Analysis of CNC Automatic Lathe Structure (CNC 복합 자동선반 구조물의 구조해석 및 동특성 분석에 관한 연구)

  • Yang, Dong-Ho;Lee, Sang-Hyeop;Cha, Seung-Hwan;Kwak, Jin;Lee, Jong-Chan;Lee, Young-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.21-27
    • /
    • 2022
  • This study was conducted to evaluate the structural stability of a CNC automatic lathe structure and avoid resonance. The analysis conditions were analyzed by applying the weight of the upper assembly. From the structural analysis, the stress and deformation were low, and the safety factor was high. From the dynamic characteristic analysis, it was determined that resonance does not occur because the natural frequency is outside the driving range. The error between the dynamic characteristic analysis and vibration test results is very low; thus, the reliability of the analysis results can be secured.

Mediating Effect of Operational Capabilities on the Dynamic Capabilities and Performance of Korean SMEs (동적역량과 기업성과에 대한 운영역량의 매개효과 분석)

  • Bae, Sun-Cheol;Kim, Byung-Keun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.41 no.4
    • /
    • pp.15-32
    • /
    • 2016
  • This study examines the relationship between dynamic capabilities and operational capabilities as well as investigates the effect of these capabilities and performance. We also test these relationships on two industry groups categorized into high-tech industries and low-tech industries. We collected 221 firms' data from a questionnaire survey of small and medium-sized enterprises in Korea. Empirical results show that dynamic capabilities and operational capabilities influence performance positively. In high-tech industries dynamic capabilities directly affect performance while marketing capabilities appear to mediate the relationship between dynamic capabilities and performance. Dynamic capabilities show no significant effect on performance for low-tech industries; however, operational capabilities do mediate the relationship between dynamic capabilities and performance.