• Title/Summary/Keyword: low-speed

Search Result 6,519, Processing Time 0.044 seconds

Robust Adaptive Control System for Induction Motor Drive Without Speed Sensor at Low Speed (저속영역에서 속도검출기가 없는 유도전동기의 강인성 적응제어 시스템)

  • Kim, Min-Heui
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.91-102
    • /
    • 1999
  • The paper describes a robust adaptive control algorithm for induction motor drive without speed sensor at low speed range. The control algorithm use only current sensors in a space vector pulse width modulation within loop control with rotor speed estimation and voltage source inverter. On-line rotor speed estimation is based on utilizing parallel model reference adaptive control system. MRAC of the modified flux model for flux and rotor speed estimator uses dual-adaptation mechanism, ${\omega}_r$ and ${\omega}_e$ scheme. The estimated flux components in the model can be compensated from the effects of offset errors on pure integrals. It can be compensated to the parameter variations and torque fluctuation with speed estimation in less then 10 rad/sec. In a simulation, the proposed induction motor control algorithm without speed sensor at very low speed range are shown to operate very well in spite of variable rotor time constant and fluctuating load without change the controller parameters. The suggested control strategy and estimation method have been validated by simulation study, and it proposed the designed system for the implementation using TI320C31 DSP/ASIC controller.

  • PDF

Least Order Load Torque.Inertia Observer for Low Speed Drive of Motor Using (전동기 극저속 운전을 위한 최소차원 부하토크.관성 관측기)

  • Kim Young-Chun;Kim Eun-Gi;Cho Moon-Taek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.575-579
    • /
    • 2006
  • In this paper, an instantaneous speed observer with a reduced order is proposed to implement an indirect control for a motor with excellent dynamic stability and performance in a very low speed region. The proposed observer can estimate the instantaneous speed in very low speed region and simplify the system configuration by adopting an least order load torque-inertia observer to estimate the load torque and the motor speed. Simulation are carried out to illustrate the performance of the proposed estimator at very low speed.

  • PDF

Low Speed Drive of Motor Using Least Order Load $Torque{\cdot}Inertia$ Observer (최소차원 토크${\cdot}$관성 관측기를 이용한 전동기 극저속 운전)

  • Kim, Eun-Gi;Jeon, Kee-Young;Oh, Bong-Hwan;Chung, Choon-Byeong;Lee, Hoon-Goo;Kim, Yong-Joo;Seo, Young-Soo;Han, Kyung-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.234-236
    • /
    • 2005
  • In this paper, an instantaneous speed observer with a reduced order is proposed to implement an indirect control for an motor with excellent dynamic stability and performance in a very low speed region. The proposed observer can estimate the instantaneous speed in very low speed region and simplify the system configuration by adopting a least order load torque-inertia observer to estimate the load torque and the rotor speed. Simulation are carried out to illustrate the performance of the proposed estimator at very low speed.

  • PDF

Prediction of Aeroacoustics Noise of Pantograph via Low Speed Wind Tunnel Test and Flow Simulation (저속풍동실험 및 유동해석을 통한 고속전철 판토그라프의 유동소음 해석)

  • 조운기;이종수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1207-1214
    • /
    • 2001
  • The paper deals with the computational approach in analysis and design of pantograph panhead strips of high-speed railway in aerodynamic and aeroacoustic concerns. Pantograph is an equipment such that the electric power is supplied from catenary system to train. Due to the nature of complexity in high-speed fluid flow, turbulence and downstream vortices result in the instability in the aerodynamic contact between panhead strips and catenary system, and consequently generate the considerable levels of flow-induced sound. In this paper, based on the preceding low speed wind-tunnel test and simulations, the aerodynamic and aeroacoustic characteristics in low speed are analyzed.

  • PDF

Continuous Contact Force Model for Low-Speed Rear-End Vehicle Impacts (차량 저속 추돌의 연속 접촉력 모델)

  • Han, In-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.181-191
    • /
    • 2006
  • The most common kind of vehicular accident is the low-speed rear-end impact that result in high portion of insurance claims and Whiplash Associated Disorders(WAD). The low-speed collisions have specific characteristics that differ from high speed collisions and must be treated differently This paper presents a simple continuous contact force model for the low-speed rear-end impact to simulate the accelerations, velocities and the contact force as functions of time. A smoothed Coulomb friction force is used to represent the effect of braking, which was found to be significant in simulating low-speed rear end impact. The intervehicular contact force is modeled using nonlinear damping and spring elements with coefficients and exponents. This paper presents how to estimate analytically stiffness and damping coefficients. The exponent of the nonlinear contact force model was determined to match the overall acceleration pulse shape and magnitude. The model can be used to determine ${\Delta}Vs$ and peak accelerations for the purpose of accident reconstruction and for injury biomechanics studies.

Analysis on Hydrodynamic Force Acting on a Catamaran at Low Speed Using RANS Numerical Method

  • Mai, Thi Loan;Nguyen, Tien Thua;Jeon, Myungjun;Yoon, Hyeon Kyu
    • Journal of Navigation and Port Research
    • /
    • v.44 no.2
    • /
    • pp.53-64
    • /
    • 2020
  • This paper discusses the hydrodynamic characteristics of a catamaran at low speed. In this study, the Delft 372 catamaran model was selected as the target hull to analyze the hydrodynamic characteristics by using the RANS (Reynold-Averaged Navier-Stokes) numerical method. First, the turbulence study and mesh independent study were conducted to select the appropriate method for numerical calculation. The numerical method for the CFD (Computational Fluid Dynamic) calculation was verified by comparing the hydrodynamic force with that obtained experimentally at high speed condition and it rendered a good agreement. Second, the virtual captive model test for a catamaran at low speed was conducted using the verified method. The drift test with drift angle 0-180 degrees was performed and the resulting hydrodynamic forces were compared with the trends of other ship types. Also, the pure rotating test and yaw rotating test proposed by Takashina, (1986) were conducted. The Fourier coefficients obtained from the measured hydrodynamic force were compared with those of other ship types. Conversely, pure sway test and pure yaw test also were simulated to obtain added mass coefficients. By analyzing these results, the hydrodynamic coefficients of the catamaran at low speed were estimated. Finally, the maneuvering simulation in low speed conditions was performed by using the estimated hydrodynamic coefficients.

An Experimental Study on the Improvement of Turbocharger Lag by Means of Air Injection in a Turbocharged Diesel Engine

  • Choi, Nag-Jung;Oh, Seong-Mo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.7
    • /
    • pp.951-962
    • /
    • 2010
  • An experimental study was performed to investigate the improvement of response performance of a turbocharged diesel engine under the operating conditions of low speed and fast acceleration. In this study, the experiment for improving the low speed and acceleration performance is performed by means of injecting air into the intake manifold of compressor exit during the period of low speed and application of a fast acceleration from low speed. The effects of air injection into the intake manifold on the response performance were investigated at various applicant parameters such as air injection pressure, accelerating rate, accelerating time, engine speed and load. The experimental results show that air injection into the intake manifold at compressor exit is closely related to the improvement of turbocharger lag under low speed and accelerating conditions of a turbocharged diesel engine. During the rapid acceleration period, the air injection into the intake manifold of turbocharged diesel engine indicates the improvement of the combustion characteristics and gas pressure in the cylinder. At low speed range of the engine, the effect of air injection shows the improvement of the pressure distribution of turbocharger and combustion pressure during the period of gas exchange pressure.

Low Speed Servo System for Brushless Motor (브러시리스 전동기의 저속 서어보 시스템)

  • Lee, Woon-Young;Lee, Kwang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.162-164
    • /
    • 1994
  • This paper proposes a servo control system of brushless motor at a low and high speed range. The control system is composed of the PI controller for high-speed control and the modified PI controller for low-speed control and the current controller using the hysteresis current control PWM method. The speed control performance is shown by the computer simulation.

  • PDF

Online Load Torque Ripple Compensator for Single Rolling Piston Compressor (싱글 로터리 컴프레셔의 온라인 부하 토크리플 보상기)

  • Gu, Bon-Gwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.457-462
    • /
    • 2014
  • Given their low cost, single rolling piston compressors (SRPC) are utilized in low-power room air-conditioning systems. The SRPC cycle is composed of one compression and discharge process per mechanical rotation. The load torque is high during the compression process of the refrigerants and low during the discharge process of the refrigerants. This load torque variation induces a speed ripple and severe vibration, which cause fatigue failures in the pipes and compressor parts, particularly under low-speed conditions. To reduce the vibration, the compressor usually operates at a high-speed range, where the rotor and piston inertia reduce the vibration. At a low speed, a predefined feed-forward load torque compensator is used to minimize the speed ripple and vibration. However, given that the load torque varies with temperature, pressure, and speed, a predefined load torque table based on one operating condition is not appropriate. This study proposes an online load torque compensator for SRPC. The proposed method utilizes the speed ripple as a load torque ripple factor. The speed ripple is transformed into a frequency domain and compensates each frequency harmonic term in an independent feed-forward manner. Experimental results are presented to verify the proposed method.

Accurate Position and Instantaneous Speed Observer for Motor Drive System using Novel Speed Estimator (속도 추정기를 이용한 전동기 구동 시스템의 정밀한 위치 및 순시 속도 관측기의 개발)

  • Kim, Hui-Uk;Kim, Yong-Seok;Seol, Seung-Gi
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.625-631
    • /
    • 1999
  • In this paper, an accurate position control using new estimator which estimates the instantaneous speed and accurate position with a low precision shaft encoder is proposed. The overall performance of position control system is strongly depend on the accuracy of the position information and the performance of the speed controller in low speed range. In this paper the position and speed of the motor are obtained from Kalman filter which is an optimal full order estimator. This estimator has good performance even in very low speed range include standstill. The simulation and experimental results confirm the validity of the proposed estimation and control scheme.

  • PDF