• Title/Summary/Keyword: low-rise residential building

Search Result 57, Processing Time 0.022 seconds

Seismic Damage to RC Low-rise Building Structures Having Irregularities at the Ground Story During the 15 November 2017 Pohang, Korea, Earthquake (2017.11.15. 포항 흥해지진의 저층 RC 비틀림 비정형 건축물의 피해 및 손상 특성)

  • Hwang, Kyung Ran;Lee, Han Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.103-111
    • /
    • 2018
  • This study examines the seismic failure of RC low-rise building structures having irregularities at the ground story during the 15 November 2017 Pohang, Korea, earthquake, $M_w=5.4$, which is the second strongest since the government began monitoring them in 1978 in South Korea. Some 2,000 private houses were damaged or destroyed in this earthquake. Particularly, serious damage to the piloti story of RC low-rise residential building structures of fewer than five stories was observed within 3 km of the epicenter with brittle shear failure of columns and walls due to severe torsional behavior. Buildings below six stories constructed before 2005 did not have to comply with seismic design requirements, so confinement detailing of columns and walls also led to inadequate performance. However, some buildings constructed after 2005 were damaged at the flexible side of the piloti story due to the high torsional irregularity. Based on these results, this study focuses on the problems of the seismic torsion design approach in current building codes.

Wind pressure characteristics of a low-rise building with various openings on a roof corner

  • Wang, Yunjie;Li, Q.S.
    • Wind and Structures
    • /
    • v.21 no.1
    • /
    • pp.1-23
    • /
    • 2015
  • Wind tunnel testing of a low-rise building with openings (holes) of different sizes and shapes on a roof corner is conducted to measure the internal and external pressures from the building model. Detailed analysis of the testing data is carried out to investigate the characteristics of the internal and external pressures of the building with different openings' configurations. Superimposition of the internal and external pressures makes the emergence of positive net pressures on the roof. The internal pressures demonstrate an overall uniform distribution. The probability density function (PDF) of the internal pressures is close to the Gaussian distribution. Compared with the PDF of the external pressures, the non-Gaussian characteristics of the net pressures weakened. The internal pressures exhibit strong correlation in frequency domain. There appear two humps in the spectra of the internal pressures, which correspond to the Helmholtz frequency and vortex shedding frequency, respectively. But, the peak for the vortex shedding frequency is offset for the net pressures. Furthermore, the internal pressure characteristics indirectly reflect that the length of the front edge enhances the development of the conical vortices.The objective of this study aims to further understanding of the characteristics of internal, external and net pressures for low-rise buildings in an effort to reduce wind damages to residential buildings.

A Study on the Condensation Performance of Curtain-wall Window in High-Rise Residential Building (초고층 주거건물 커튼월의 창호부 결로 성능평가에 관한 연구)

  • Seok Ho-Tae;Chung Man-Seok;Kwak Hyun-Chul;Kwon Jong-Wook
    • Journal of the Korean housing association
    • /
    • v.16 no.4
    • /
    • pp.81-89
    • /
    • 2005
  • The purpose of this thesis is thermal performance simulation about various type that can apply in the high-rise residential building to estimate condensation performance of window that is consisted of frame and glazing in curtain wall. The result of this thesis are summarized as follows. First, condensation occurrence point when relative humidity is $30{\cdot}40{\cdot}50\%$ is shortest Low-e double glass. Difference by type of gas and spacer was a little by $2{\~}6$ cm, among it, the case that apply krypton in gas and the case that apply double seal in spacer were less condensation occurrence distribution. Second, when analyzed improved proposal of window and existing plan through simulation, improved proposal is superior from general side of the interior and exterior temperature, thermal break surrounding temperature and temperature of frame end, condensation occurrence point etc. Therefore, if it was used improved proposal with effect that improve in curtain wall of high-rise residential building, it may improve window condensation performance of curtain wall.

The significance of removing shear walls in existing low-rise RC frame buildings - Sustainable approach

  • Keihani, Reza;Bahadori-Jahromi, Ali;Goodchild, Charles
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.563-576
    • /
    • 2019
  • According to The Concrete Centre, in the UK shear walls have become an inseparable part of almost every reinforced concrete frame building. Recently, the construction industry has questioned the need for shear walls in low to mid-rise RC frame buildings. This study tried to address the issue in two stages: The first stage, the feasibility of removing shear walls in an existing design for a residential building where ETABS and CONCEPT software were used to investigate the structural performance and cost-effectiveness respectively. The second stage, the same structure was examined in various locations in the UK to investigate regional effects. This study demonstrated that the building without shear wall could provide adequate serviceability and strength within the safe range defined by Eurocodes. As a result, construction time, overall cost and required concrete volume are reduced which in turn enhance the sustainability of concrete construction.

Comparison of aerodynamic loading of a high-rise building subjected to boundary layer and tornadic winds

  • Ashrafi, Arash;Chowdhury, Jubayer;Hangan, Horia
    • Wind and Structures
    • /
    • v.34 no.5
    • /
    • pp.395-405
    • /
    • 2022
  • Tornado-induced damages to high-rise buildings and low-rise buildings are quite different in nature. Tornado losses to high-rise buildings are generally associated with building envelope failures while tornado-induced damages to low-rise buildings are usually associated with structural or large component failures such as complete collapses, or roofs being torn off. While studies of tornado-induced structural damages tend to focus mainly on low-rise residential buildings, transmission towers, or nuclear power plants, the current rapid expansion of city centers and development of large-scale building complexes increases the risk of tornadoes impacting tall buildings. It is, therefore, important to determine how tornado-induced load affects tall buildings compared with those based on synoptic boundary layer winds. The present study applies an experimentally simulated tornado wind field to the Commonwealth Advisory Aeronautical Research Council (CAARC) building and estimates and compares its pressure coefficient effects against the Atmospheric Boundary Layer (ABL) flow field. Simulations are performed at the Wind Engineering, Energy and Environment (WindEEE) Dome which is capable of generating both ABL and tornadic winds. A model of the CAARC building at a scale of 1:200 for both ABL and tornado flows was built and equipped with pressure taps. Mean and peak surface pressures for TLV flow are reported and compared with the ABL induced wind for different time-averaging. By following a compatible definition of the pressure coefficients for TLV and ABL fields, the resulting TLV pressure field presents a similar trend to the ABL case. Also, the results show that, for the high-rise building model, the mean and 3-sec peak pressures are larger for the ABL case compared to the TLV case. These results provide a way forward for the code implementation of tornado-induced pressures on high-rise buildings.

A "Fabric-First" Approach to Sustainable Tall Building Design

  • Oldfield, Philip
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.2
    • /
    • pp.177-185
    • /
    • 2017
  • This research suggests the most effective way for improving energy efficiency in tall buildings is a "fabric-first" approach. This involves optimizing the performance of the building form and envelope as a first priority, with additional technologies a secondary consideration. The paper explores a specific fabric-first energy standard known as "Passivhaus". Buildings that meet this standard typically use 75% less heating and cooling. The results show tall buildings have an intrinsic advantage in achieving Passivhaus performance, as compared to low-rise buildings, due to their compact form, minimizing heat loss. This means high-rises can meet Passivhaus energy standards with double-glazing and moderate levels of insulation, as compared to other typologies where triple-glazing and super-insulation are commonplace. However, the author also suggests that designers need to develop strategies to minimize overheating in Passivhaus high-rises, and reduce the quantity of glazing typical in high-rise residential buildings, to improve their energy efficiency.

Study of Urban Land Cover Changes Relative to Demographic and Residential Form Changes: A Case Study of Wonju City, Korea

  • Han, Gab-Soo;Kim, Mintai
    • Journal of Forest and Environmental Science
    • /
    • v.31 no.4
    • /
    • pp.288-296
    • /
    • 2015
  • In many very high density cities in Asia in which there is limited area to expand, growth is forced upward as well as outward. Densely packed detached houses and low-rise buildings are replaced by lower density high-rises, leaving open spaces between high-rise buildings. Through this process, areas that formerly did not have much green space gain valuable green spaces, and new ecological corridors and patches are created. In this study, the demographic and housing-type changes of Wonju City were delineated using land use maps, aerial images, census data, and other administrative data. Green area changes were calculated using land cover data derived from multi-year Landsat TM satellite imagery. The values were then compared against demographic and housing-type changes for each administrative unit. The overall results showed a decrease of forested area in the city and an increase of developed area. Urban sprawl was clearly visible in many of the suburban areas. However, as expected, we also detected areas in which greenness did not decrease when the population greatly increased. These areas were characterized by residential building complexes of ten or more stories. If an equal number of housing units had been built as detached houses, these areas would not have kept as much green space. Our research result showed that high-density and high-rise residential structures can offer an alternative means to protect or create urban green spaces in high-density urban environments.

A Study on the Improvement Direction of Life Safety Codes for High Fire Risk Building Applications (화재위험성이 높은 건축물의 용도를 대상으로 한 인명안전기준의 개선방향)

  • Kwon, Young-Jin;Jin, Seung-Hyeon;Lee, Byeong-Heun;Koo, In-Hyuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.53-54
    • /
    • 2021
  • Grenfell Tower was renovated in 2014 and 2016 at a high cost to replace the exterior materials, windows and co-heating facilities of the building. The exterior materials used during the repair work were sandwich panels filled with polyethylene and plastic, which were expanded on the aluminum metal surface. It is a product called Celotex RS 5000, a low-resolution but inexpensive repair material, and is currently an external material that cannot be used in high-rise buildings. Similar domestic fire cases began to focus social attention on the safety of high-rise buildings through the Busan Residential Complex Fire (2010), Uijeongbu Urban Living Housing Fire (2015), and Ulsan Residential Complex Fire (2020), and residents' safety concerns are increasing. In Korea, the occurrence and risk of similar fires are high, so setting up fire prevention measures through fire case investigation is considered the most basic measure in securing human safety. Therefore, the purpose of this study is to examine the status of fire damage caused by domestic and foreign eruptions, domestic and international research status and related regulations on external materials and windows starting from the Grenfell Tower fire in England.

  • PDF

Wind induced internal pressure overshoot in buildings with opening

  • Guha, T.K.;Sharma, R.N.;Richards, P.J.
    • Wind and Structures
    • /
    • v.16 no.1
    • /
    • pp.1-23
    • /
    • 2013
  • The wind-induced transient response of internal pressure following the creation of a sudden dominant opening during the occurrence of high external pressure, in low-rise residential and industrial buildings was numerically investigated. The values of the ill-defined parameters namely the flow contraction coefficient, loss coefficient and the effective slug length were calibrated by matching the analytical response with the computational fluid dynamics predictions. The effect of a sudden i.e., "instantaneously created" windward opening in the Texas Technical University (TTU) test building envelope was studied for two different envelope flexibility-leakage combinations namely: (1) a quasi-statically flexible and non-porous envelope and (2) a quasi-statically flexible and porous envelope. The responses forced by creating the openings at different time leads/lags with respect to the occurrence of the peak external pressure showed that for cases where the openings are created in close temporal proximity to the peak pressure, the transient overshoot values of internal pressure could be higher than the peak values of internal pressure in the pre-sequent or subsequent resonant response. In addition, the influence of time taken for opening creation on the level of overshoot was also investigated for the TTU building for the two different envelope characteristics. Non-dimensional overshoot factors are presented for a variety of cavity volume-opening area combinations for (1) buildings with rigid/quasi-statically flexible non-porous envelope, and (2) buildings with rigid/quasi-statically flexible and porous envelope (representing most low rise residential and industrial buildings). While the factors appear slightly on the high side due to conservative assumptions made in the analysis, a careful consideration regarding the implication of the timing and magnitude of such overshoots during strong gusts, in relation to the steady state internal pressure response in cyclonic regions, is warranted.

A proposed technique for determining aerodynamic pressures on residential homes

  • Fu, Tuan-Chun;Aly, Aly Mousaad;Chowdhury, Arindam Gan;Bitsuamlak, Girma;Yeo, DongHun;Simiu, Emil
    • Wind and Structures
    • /
    • v.15 no.1
    • /
    • pp.27-41
    • /
    • 2012
  • Wind loads on low-rise buildings in general and residential homes in particular can differ significantly depending upon the laboratory in which they were measured. The differences are due in large part to inadequate simulations of the low-frequency content of atmospheric velocity fluctuations in the laboratory and to the small scale of the models used for the measurements. The imperfect spatial coherence of the low frequency velocity fluctuations results in reductions of the overall wind effects with respect to the case of perfectly coherent flows. For large buildings those reductions are significant. However, for buildings with sufficiently small dimensions (e.g., residential homes) the reductions are relatively small. A technique is proposed for simulating the effect of low-frequency flow fluctuations on such buildings more effectively from the point of view of testing accuracy and repeatability than is currently the case. Experimental results are presented that validate the proposed technique. The technique eliminates a major cause of discrepancies among measurements conducted in different laboratories. In addition, the technique allows the use of considerably larger model scales than are possible in conventional testing. This makes it possible to model architectural details, and improves Reynolds number similarity. The technique is applicable to wind tunnels and large scale open jet facilities, and can help to standardize flow simulations for testing residential homes as well as significantly improving testing accuracy and repeatability. The work reported in this paper is a first step in developing the proposed technique. Additional tests are planned to further refine the technique and test the range of its applicability.