• Title/Summary/Keyword: low-level cloud

Search Result 68, Processing Time 0.026 seconds

A Study on Evaluating Digital Illusion Level of Public Library (공공도서관의 디지털 통합 수준 평가에 관한 연구)

  • Noh, Younghee
    • Journal of the Korean Society for information Management
    • /
    • v.32 no.4
    • /
    • pp.167-203
    • /
    • 2015
  • This study tends to apprehend how much public library contributes to a role of upbuilder of digital integrated local society through a survey. For this, I performed the survey on 935 organization of public library in the whole country registered in national library statistical system. As a result, firstly, it's apprehended that equipment infra, Internet infra, etc like computer, laptop, scanner, tablet PC, etc are in relatively high level. Secondly, service or resource like electronic book, digital and virtual reference service, library service mobile App, etc that users can use are in relatively high level but software supporting cooperation and group task, fusibility of participating space, etc are shown very low level. Thirdly, the rate of literacy training relating to technology were only 22.4%, education subject focused on resource searching subject and somewhat future-oriented technical education like directions of video conference technique, cloud computing application education, etc wasn't conducted. Finally, we should consider expansion of providing technology and equipment and provision of future-oriented service and education according to a flow of the time that needs to seek change in various roles of library as enjoying culture space or creative space.

Study on Characteristics of Snowfall and Snow Crystal Habits in the ESSAY (Experiment on Snow Storms At Yeongdong) Campaign in 2014 (2014년 대설관측실험(Experiment on Snow Storms At Yeongdong: ESSAY)기간 강설 및 눈결정 특성분석)

  • Seo, Won-Seok;Eun, Seung-Hee;Kim, Byung-Gon;Ko, A-Reum;Seong, Dae-Kyeong;Lee, Gyu-Min;Jeon, Hye-Rim;Han, Sang-Ok;Park, Young-San
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.261-270
    • /
    • 2015
  • Characteristics of snowfall and snow crystal habits have been investigated in the campaign of Experiment on Snow Storms At Yeongdong (ESSAY) using radiosonde soundings, Global Navigation Satellite System (GNSS), and a digital camera with a magnifier for taking a photograph of snowfall crystals. The analysis period is 6 to 14 February 2014, when the accumulated snowfall amount is 192.8 cm with the longest snowfall duration of 9 days. The synoptic situations are similar to those of the previous studies such as the Low pressure system passing by the far South of the Korean peninsula along with the Siberian High extending to northern Japan, which eventually results in the northeasterly or easterly flows and the long-lasting snowfall episodes in the Yeongdong region. In general, the ice clouds tended to exist below around 2~3 km with the consistent easterly flows, and the winds shifted to northerly~northwesterly above the clouds layer. The snow crystal habits observed in the ESSAY campaign were mainly dendrite, consisting of 70% of the entire habits. The rimed habits were frequently captured when two-layered clouds were observed, probably through the process of freezing of super-cooled droplets on the ice particles. The homogeneous habit such as dendrite was shown in case of shallow clouds with its thickness of below 500 m whereas various habits were captured such as dendrites, rimed dendrites, aggregates of dendrites, plates, rimed plates, etc in the thick cloud with its thickness greater than 1.5 km. The dendrites appeared to be dominant in the condition of cloud top temperature specifically ranging $-12{\sim}-16^{\circ}C$. However, the association of snow crystal habits with temperature and super-saturation in the cloud could not be examined in the current study. Better understandings of characteristics of snow crystal habits would contribute to preventing breakdown accidents such as a greenhouse destruction and collapse of a temporary building due to heavy snowfall, and traffic accidents due to snow-slippery road condition, providing a higher-level weather information of snow quality for skiers participating in the winter sports, and estimating more accurate snowfall amount, location, and duration with the fallspeed of solid precipitation.

A Learning-based Power Control Scheme for Edge-based eHealth IoT Systems

  • Su, Haoru;Yuan, Xiaoming;Tang, Yujie;Tian, Rui;Sun, Enchang;Yan, Hairong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4385-4399
    • /
    • 2021
  • The Internet of Things (IoT) eHealth systems composed by Wireless Body Area Network (WBAN) has emerged recently. Sensor nodes are placed around or in the human body to collect physiological data. WBAN has many different applications, for instance health monitoring. Since the limitation of the size of the battery, besides speed, reliability, and accuracy; design of WBAN protocols should consider the energy efficiency and time delay. To solve these problems, this paper adopt the end-edge-cloud orchestrated network architecture and propose a transmission based on reinforcement algorithm. The priority of sensing data is classified according to certain application. System utility function is modeled according to the channel factors, the energy utility, and successful transmission conditions. The optimization problem is mapped to Q-learning model. Following this online power control protocol, the energy level of both the senor to coordinator, and coordinator to edge server can be modified according to the current channel condition. The network performance is evaluated by simulation. The results show that the proposed power control protocol has higher system energy efficiency, delivery ratio, and throughput.

Bird's Eye View Semantic Segmentation based on Improved Transformer for Automatic Annotation

  • Tianjiao Liang;Weiguo Pan;Hong Bao;Xinyue Fan;Han Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.1996-2015
    • /
    • 2023
  • High-definition (HD) maps can provide precise road information that enables an autonomous driving system to effectively navigate a vehicle. Recent research has focused on leveraging semantic segmentation to achieve automatic annotation of HD maps. However, the existing methods suffer from low recognition accuracy in automatic driving scenarios, leading to inefficient annotation processes. In this paper, we propose a novel semantic segmentation method for automatic HD map annotation. Our approach introduces a new encoder, known as the convolutional transformer hybrid encoder, to enhance the model's feature extraction capabilities. Additionally, we propose a multi-level fusion module that enables the model to aggregate different levels of detail and semantic information. Furthermore, we present a novel decoupled boundary joint decoder to improve the model's ability to handle the boundary between categories. To evaluate our method, we conducted experiments using the Bird's Eye View point cloud images dataset and Cityscapes dataset. Comparative analysis against stateof-the-art methods demonstrates that our model achieves the highest performance. Specifically, our model achieves an mIoU of 56.26%, surpassing the results of SegFormer with an mIoU of 1.47%. This innovative promises to significantly enhance the efficiency of HD map automatic annotation.

A Study on Design Development of the Hotel Robe Based on Korean Images (한국 전통 이미지의 호텔용가운 디자인 개발에 관한 연구)

  • 문광희;문명옥
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.1
    • /
    • pp.45-53
    • /
    • 2004
  • This study was conducted to redesign hotel robes based on Korean images. Hotel robes are furnished at many Korean hotels to increase the level of their guests' satisfaction toward their hotel services. The current hotel robe has several flaws in utility and design. Also, the robes register a low level on guests' satisfaction while generating high cleaning cost. Consequently, improvements in the hotel robes' material, motifs, style, and color were needed. The current one-piece, cotton towel weave robes used in hotels are white and pale. Half of the hotel guests never wear the hotel robes during their stay, because they are unattractive and most Korean hotels provide a robe similar in design. Furthermore, these robes are undistinguishable from those found at other countries. Nevertheless, Korean hotel managers feel that the hotel robe is an important tool to express its hotel image and to increase guests' satisfaction of their services. Most hotel managers and consumers agreed that it is necessary to design hotel robes based on Korean images. They believe that redesigning the hotel robes based on Korean images would induce hotel guests to wear them and at the same time feel part of the Korean traditional culture. The Korean traditional motifs of Taegug, Un (cloud), JuJag (phoenix), and Kumkwan (gold crown) were used in the new design of the hotel robes. The style of new hotel robes is the Korean traditional Pho of the Three Kingdoms. The colors of new hotel robes are white and pink. Forty-three examiners evaluated the newly designed robes for their aesthetic, symbolic and distinctional values. They concurred that the new robes were much better than the current ones.

Three-Dimensional Positional Accuracy Analysis of UAV Imagery Using Ground Control Points Acquired from Multisource Geospatial Data (다종 공간정보로부터 취득한 지상기준점을 활용한 UAV 영상의 3차원 위치 정확도 비교 분석)

  • Park, Soyeon;Choi, Yoonjo;Bae, Junsu;Hong, Seunghwan;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1013-1025
    • /
    • 2020
  • Unmanned Aerial Vehicle (UAV) platform is being widely used in disaster monitoring and smart city, having the advantage of being able to quickly acquire images in small areas at a low cost. Ground Control Points (GCPs) for positioning UAV images are essential to acquire cm-level accuracy when producing UAV-based orthoimages and Digital Surface Model (DSM). However, the on-site acquisition of GCPs takes considerable manpower and time. This research aims to provide an efficient and accurate way to replace the on-site GNSS surveying with three different sources of geospatial data. The three geospatial data used in this study is as follows; 1) 25 cm aerial orthoimages, and Digital Elevation Model (DEM) based on 1:1000 digital topographic map, 2) point cloud data acquired by Mobile Mapping System (MMS), and 3) hybrid point cloud data created by merging MMS data with UAV data. For each dataset a three-dimensional positional accuracy analysis of UAV-based orthoimage and DSM was performed by comparing differences in three-dimensional coordinates of independent check point obtained with those of the RTK-GNSS survey. The result shows the third case, in which MMS data and UAV data combined, to be the most accurate, showing an RMSE accuracy of 8.9 cm in horizontal and 24.5 cm in vertical, respectively. In addition, it has been shown that the distribution of geospatial GCPs has more sensitive on the vertical accuracy than on horizontal accuracy.

Meteorological Characteristics of High-Ozone Episode Days in Daegu, Korea (대구시의 고농도 오존 발생 일에 나타나는 기상학적 특성)

  • Son, Im-Young;Kim, Hee-Jong;Yoon, Ill-Hee
    • Journal of the Korean earth science society
    • /
    • v.23 no.5
    • /
    • pp.424-435
    • /
    • 2002
  • This study analyzes the surface ozone and meteorological data in Daegu for a period from 1997 to 1999. It also investigates the meteorological characteristics of high ozone episodes. For this study the high ozone episode has been defined as a daily maximum ozone concentration higher than 100ppb in at least one station among six air quality monitoring stations in Daegu, Korea. The frequency of episodes is 13 days. The frequency is the highest in May and September. The average value of daily maximum ozone concentration is 81.6ppb, and 8-hour average ozone concentration is 58.6ppb for the high episodes. This shows that ozone pollution is continuous and wide-ranging in Daegu. The daily maximum ozone concentration is positively correlated to solar radiation and daily maximum temperature, but negatively correlated to relative humidity, wind speed and cloud amount. The maximal correlation coefficient to solar radiation is 0.45. The differences between high ozone episode day's daily mean meteorological value and monthly mean value are +1.58hPa for sea level pressure, +3.45${\circ}$C for maximum temperature, -5.69% for relative humidity, -0.46ms$^{-1}$ for wind speed, -1.79 for cloud amount, and +3.97MJm$^{-2}$ for solar radiation, respectively. This shows that strong solar radiation, low wind speed and no precipitation between 0700${\sim}$1100LST are favorite conditions for high ozone episodes. It is related to the morning stagnant condition.

A Study on Real-Time SOC Structure Behavior Evaluation System using Big Data (Big data를 이용한 실시간 SOC 구조물 거동분석 시스템 연구)

  • Jung-Youl Choi;Jae-Min Han;Dae-Hui Ahn;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.691-695
    • /
    • 2023
  • Currently, the utilization of measurement results of the automated measurement system is very low and is at the level of providing only fragmentary measurement results. In this study, we are going to study a structure behavior analysis 3D display system with high precision and reliability for automated measurement data obtained by constructing big data by transmitting massive data values measured in real time to the cloud and using a Python-based algorithm. As a result of the study, as a system that can evaluate the behavior of a structure to a manager in real time, it provides analysis data in real time without significant restrictions regardless of the type of measurement data and sensor, and derived it as a 3D display. In addition, it was analyzed that the manager could grasp the behavior graph of the structure in real time and more easily judge the derivation of the weak part of the structure through data analysis. In the future, by analyzing the behavior of structures in three dimensions using past and present data, it is expected that more effective measurement results can be obtained in terms of repair, reinforcement, and maintenance of realistic structures.

Estimation of surface-level PM2.5 concentration based on MODIS aerosol optical depth over Jeju, Korea (MODIS 자료의 에어로졸의 광학적 두께를 이용한 제주지역의 지표면 PM2.5 농도 추정)

  • Kim, Kwanchul;Lee, Dasom;Lee, Kwang-yul;Lee, Kwonho;Noh, Youngmin
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.5
    • /
    • pp.413-421
    • /
    • 2016
  • In this study, correlations between Moderate Resolution Imaging Spectroradiometer (MODIS) derived Aerosol Optical Depth (AOD) values and surface-level $PM_{2.5}$ concentrations at Gosan, Korea have been investigated. For this purpose, data from various instruments, such as satellite, sunphotometer, Optical Particle Counter (OPC), and Micro Pulse Lidar (MPL) on 14-24 October 2009 were used. Direct comparison between sunphotometer measured AOD and surface-level $PM_{2.5}$ concentrations showed a $R^2=0.48$. Since the AERONET L2.0 data has significant number of observations with high AOD values paired to low surface-level $PM_{2.5}$ values, which were believed to be the effect of thin cloud or Asian dust. Correlations between MODIS AOD and $PM_{2.5}$ concentration were increased by screening thin clouds and Asian dust cases by use of aerosol profile data on Micro-Pulse Lidar Network (MPLNet) as $R^2$ > 0.60. Our study clearly demonstrates that satellite derived AOD is a good surrogate for monitoring atmospheric PM concentration.

Analysis of the February 2014 East Coast Heavy SnowFall Case Due to Blocking (블로킹에 의한 2014년 2월 동해안 지방 폭설 분석)

  • Bae, Jeong-Ho;Min, Ki-Hong
    • Atmosphere
    • /
    • v.26 no.2
    • /
    • pp.227-241
    • /
    • 2016
  • This study investigated the cause of the heavy snowfall that occurred in the East Coast of Korea from 6 February to 14 February 2014. The synoptic conditions were analyzed using blocking index, equivalent potential temperature, potential vorticity, maritime temperature difference, temperature advection, and ground convergence. During the case period, a large blocking pattern developed over the Western Pacific causing the flow to be stagnant, and there was a North-South oriented High-to-Low pressure system over the Korean Peninsula because of this arrangement. The case period was divided into three parts based on the synoptic forcing that was responsible for the heavy snowfall; detailed analyses were conducted for the first and last period. In the first period, a heavy snowfall occurred over the entire Korean Peninsula due to strong updrafts from baroclinic instability and a low pressure caused by potential vorticity located at the mid-troposphere. In the lower atmosphere, a North-South oriented High-to-Low pressure system over the Eastern Korea intensified the easterly airflow and created a convergence zone near the ground which strengthened the upslope effect of the Taebaek Mountain range with a cumulative fresh snowfall amount of 41 cm in the East Coast region. In the last period, the cold air nestled in the Maritime Province of Siberia and Manchuria strengthened much more than that in the first half and extended to the East Sea. The temperature difference between the 850 hPa air and the SST was large and convective clouds developed over the sea. The highest cumulative fresh snow amount of 39.7 cm was recorded in the coastal area during this period. During the entire period, vertically oriented equivalent potential temperature showed neutral stability layer that helped the cloud formation and development in the East Coast. The 2014 heavy snowfall case over the East Coast provinces of Korea were due to: 1) stagnation of the system by blocking pattern, 2) the dynamic effect of mid-level potential vorticity of 1.6 PVU, 3) the easterly air flow from North-South oriented High-to-Low pressure system, 4) the existence of vertically oriented neutral stable layer, and 5) the expansion of strong cold air into the East Sea which created a large temperature difference between the air and the ocean.