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Abstract 

 
The Internet of Things (IoT) eHealth systems composed by Wireless Body Area Network 
(WBAN) has emerged recently. Sensor nodes are placed around or in the human body to 
collect physiological data. WBAN has many different applications, for instance health 
monitoring. Since the limitation of the size of the battery, besides speed, reliability, and 
accuracy; design of WBAN protocols should consider the energy efficiency and time delay. 
To solve these problems, this paper adopt the end-edge-cloud orchestrated network 
architecture and propose a transmission based on reinforcement algorithm. The priority of 
sensing data is classified according to certain application. System utility function is modeled 
according to the channel factors, the energy utility, and successful transmission conditions. 
The optimization problem is mapped to Q-learning model. Following this online power control 
protocol, the energy level of both the senor to coordinator, and coordinator to edge server can 
be modified according to the current channel condition. The network performance is evaluated 
by simulation. The results show that the proposed power control protocol has higher system 
energy efficiency, delivery ratio, and throughput.  
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1. Introduction 

World aged tendency of population and growth of chronic diseases result in rise of 
healthcare cost [1]. The challenge faced by the traditional healthcare services can be solved by 
technological advancements in microelectronics, wireless communications, and computing [2]. 
Technology of Wireless Body Area Networks (WBANs) can be applied in the Internet of 
Things (IoT) eHealth system, providing reliable, scalable, and robust health monitoring 
services [3]. Several sensor nodes and actuators that may deploy inside or around the human 
body, communicating to the coordinators (sink node) compose the Wireless Body Area 
Networks [4]. Physiological and environment data are collected by body and environment 
sensors. Different application systems gather different information, such as temperature, 
breath, blood pressure, glucose, SpO2, heart-rate, ECG, and so on [5].  

One of the vital challenges in WBANs is the efficiency of energy. The body and 
environment sensors of WBANs are implanted in or wore on human body, or attached to 
clothes. Thus the battery is inconvenient to recharge or replace. Due to the size constraints, the 
capacity of battery has strict limitation. Study indicates that the transmission of control and 
data frame is a major part of device energy consumption of the WBAN. The transmission 
power control (TPC) protocol is one of the crucial mechanisms in energy-restricted WBANs. 
The TPC protocol can moderate the energy consumption of sensor nodes and thus extend the 
network lifecycle. The transmission power control protocol adapts the transmission power 
level of sensor nodes and coordinators of WBAN according to the communication link state. 
The power level should not only maintain the reliability of the data transmission but also 
optimizing the utilization of energy. 

The existing power control protocols for WBANs are based on the traditional cloud 
network architecture. We apply the edge-cloud network architecture, and propose a two-stage 
transmission power control (TPC) protocol on reinforce learning for eHealth Internet of Things 
systems. The Mobile Edge Computing (MEC) technology is adopt to the eHealth Internet of 
Things systems. We model for the energy utility of WBANs based on the transmission power 
level. The optimization problem is solved by the reinforcement learning algorithm. It is 
indicated by the simulation results that the network performance metrics in the system energy 
efficiency, delivery ratio, and throughput are improved by the proposed protocol. 

2. Related Works 
The transmission power control (TPC) protocol of the wireless body area networks (WBANs) 
can substantially moderate the system energy consumption. The TPC protocol attempts to 
adapt the transmission power level according to the real time link condition to improve energy 
efficiency in WBANs. To solve the energy limitation problem, numerous transmission power 
control mechanisms were proposed [6-18].  

In [6], the authors used the information of periodic body movements in dynamic channel 
conditions. An accelerator-assisted transmission power control mechanism (AA-TPC) was 
proposed. It deployed additional local accelerators to adjust transmission power of nodes, and 
selected the best time to transmit data utilizing the relationship between channel states and 
accelerator signals. However, this protocol only utilized wrist-worn sensor devices. In [7], the 
authors designed a gait-cycle-driven transmission power control (G-TPC) mechanism 
applying the channel periodic fluctuation during walking. This mechanism employed a long-
term average channel gain and a time-dependent channel model. The authors of [8] designed 
a relay-aided transmission power control protocol, which aims to alleviate the burden of 

https://www.collinsdictionary.com/zh/dictionary/english-thesaurus/moderate
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relaying of relay nodes on a premise of reliable transmission. In this protocol, transmission 
strategy is changed between relay aided transmission and direct transmission.  

The authors of [9] proposed a PID method based on control theory to dynamically adjust 
transmission power. In [10], the authors proposed a time correlation model transmission power 
control scheme (TCM-TPC), which used a temporal correlation model to describe the channel 
condition. In [18], an optimized hybrid technique of Genetic algorithm with BAT algorithm 
(GABAT) is presented to achieve QoS metrics. The proposed scheme gives higher priority to 
the emergency packets than the normal packets taking into account the dynamic link constraint. 
In [19-20], the authors applied the learning-based algorithm to the botnet attack detection. The 
authors of [21] proposed a statistic Quality of Service (QoS) based fixed power allocation 
method to take the statistic QoS of the popular files into consideration and improve the energy 
efficiency. 

The above-mentioned related works proposed divers power control protocols for WBANs. 
These mechanisms are based on the cloud network architecture. With the development of 
mobile edge computing, the edge-cloud architecture is applied to many different kinds of 
network systems. In the healthcare monitoring system based on edge computing, power control 
schemes are needed for the data transmission not only between the sensors and coordinator, 
but also between the coordinator and MEC servers. Thus two-stage power control scheme is 
required. Also, the tradeoff between energy consumption and link reliability need to be 
considered. In the real application, the link state changes rapidly due to mobility.  

3. System Model 
The traditional eHealth system employed WBANs is designed generally based on the cloud 
network architecture. Data is collected by sensor node and transmit to the coordinator, then 
relay to the remote cloud server [22]. Time delay is longer than local process. However, some 
emergencies such as heart attack need to be responded quickly. The data transmission delay 
between the user and remote cloud server can be quite long, which may procrastinate the 
rescue [23]. The mobile edge servers (MESs) deploy near nodes of WBANs in the edge-cloud 
network architecture. The mobile edge servers can reply the crucial request promptly and then 
contact the nearby ambulance if necessary. Compared with the traditional cloud-based 
architecture, it has many advantages, such as shorter latency, lower energy and higher Quality 
of Service (QoS). 

Fig. 1 indicates an example of the edge-cloud Internet of Things eHealth systems. The 
system has three tiers: the cloud layer, the edge layer, and the user layer. The user layer consists 
of many WBANs. Usually, for each user, several body sensor nodes attach on or implanted in 
the user’s body, collecting physiological information. The heart sensor, for instance, monitors 
heartbeat. The activity sensors is positioned on the human body to detect the posture and 
movement, like lying, sitting, walking, and running [24]. 

In one WBAN, the coordinator (or personal devices like smartphone) gathers the sensing 
data. It also has the function of data storage, process, fusion, analysis and display. The 
coordinator relays data to the wireless access point (AP). In some systems, there is no AP. The 
access point or coordinator may link to the Internet.The data is relayed the cloud data center. 
The reference nodes (RNs) are equipped by GPS, or preprogrammed with their locations, using 
for localization.  

The second layer is edge layer, which is composed of the mobile edge computing (MEC) 
server and the wireless access point (AP). The coordinator transmits data and requirement to 
the MEC server and AP. Edge Computing is a technology aimed at offloading mobile devices 
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to nearby data process center, which can provide short-latency services. The MEC servers 
perform tasks in order of priority and data fusion. Then the MEC servers relay data to the cloud 
system and database. On account of data fusion, the data volume from sensor to cloud is 
significantly lessened. The utility efficiency of network communication and computing 
capability can be increased by applying edge computing architecture. Therefore, adopting edge 
computing architecture can improve the system Quality of Service (QoS) and Quality of 
Experience (QoE).  
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Fig. 1. Example of edge-cloud eHealth systems. 

 
The third layer is cloud. Data of patients is stored in the database. The doctors or expert 

systems examine patients, then provide medical services. Through the Internet, remote experts 
from different places can conduct a consultation or collaboration. If emergency happens, such 
as heart attack, eHealth system will send the information to the nearest ambulance [25]. Also, 
the patients’ health information can be stored in the cloud. Data analysis and statistics can be 
done in the long term. 

The communication of WBANs is supported by IEEE 802.15.6 protocol stacks [26]. This 
standard specifies the network protocols of WBAN physical (PHY) layer and medium access 
control (MAC) layer. There are three kinds of physical layers: narrowband (NB) PHY, ultra 
wideband (UWB) PHY, and human body communication (HBC) PHY. The specification for 
the MAC layer divides the channel into superframes, which are held at both ends by the 
beacons in the beacon-enable mode. The superframe is composed by nine periods, including 
beacon, exclusive access phase 1 (EAP1), random access phase 1 (RAP1), managed access 
phase 1 (MAP1), exclusive access phase 2 (EAP2), random access phase 2 (RAP2), managed 
access phase 2 (MAP2), beacon 2, contention access phase (CAP). MAC layer controls user 
data to access wireless media. It is an essential part of how the network resources, such as 
channels and time slots, are used by the nodes. 
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4. Energy-Efficient Transmission Power Control Scheme 
This section describes a power control algorithm, which is based on edge-cloud network 
architecture, using reinforce learning mechanism. It can effectively control the transmission 
power of sensor nodes and coordinator, thus improving the energy efficiency of the system 
without accurate channel state information. 

Fig. 2 shows the communication architecture of body area networks in edge-cloud 
architecture. Health data are collected by the body sensors. Data is transmitted data from the 
body sensors to the BAN coordinator (or personal devices such as smartphone or PDA) after 
confusion. The coordinator transmit data to the access point.   
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Fig. 2.  Communication architecture of WBANs. 

 
To model the system, we consider that the coverage area of mobile edge server is composed 

of several body area networks. It can be denoted as: B={B0, B1,…BM}, in which B0 stands for 
the mobile edge server; B1, B2,…BM stand for the coordinator of WBAN. Ub stands for the set 
of bth wireless body area network. Ub={ub,1, ub,2,… ub,Nb}. Specifically, ub,μ is the μth sensor 
node in the bth WBAN. pb,μ stands for the transmission power of ub,μ. pc

b,μ stands for the 
constant power consumption of ub,μ. SINRb,μ stands for the signal interference noise ratio of Bb, 
as shown in (1), in which Ib,μ is the interference signal, as shown in (2). Rb,μ is the throughput 
of the network, which is shown in (3). gb

b,μ stands for the channel gain of ub,μ and Bb. 
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Wn0 stands for the power of Gaussian white noise, which power spectral density is n0. The 
throughput of unit transmission energy denote the transmission energy efficiency. ηb,μ stands 
for the energy utility of ub,μ. 
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where Pb,μ stands for the energy consumption of ub,μ. We define sum of the energy utility of 
each sensor node in WBAN b as its energy utility. 
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The optimization mathematical model of energy utility is: 
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where SINRmin
b,μ stands for the minimum signal interference noise ratio (SINR) for signal 

receiving. pmax
b,μ stands for the maximum transmission power level of sensor node ub,μ. The 

two constraint conditions should be satisfied in the system.  
The Q-Learning algorithm is a kind of reinforcement learning algorithm. It can be used to 

find the solution to the above optimization problem. In Q-learning, in certain system state, to 
maximize the objective function, system choose action. The Q-learning is used to allocate the 
transmission of both sensor nodes and the coordinator of WBANs. In Q-learning algorithm, 
there are three elements: status (state space) (S), action space (A), and rewards (R). It is shown 
in Fig. 3 that the procedure of agent interaction with environment. 

The entity may be in many different states. All these possible states compose the state space 
set. In a certain state, the entity can take various actions, which form the set of action space. 
The reward function is defined as the system reward value brought by executing the action a 
under the entity state s. Q(s, a) is the “state-action” function. Pb=[pb,1, pb,2, … pb,Nb] is the vector 
of transmission power of each sensor. The adjusting of transmission power to Pb indicates to 
ab=Pb. 

By using (1) and SINRmin
b,μ, it can be obtained that the range of transmission power of 

sensor node ub,μ is pmax
b,μ≤pb,μ≤pmax

b,μ. In this range, there are db,μ transmission power levels. 
The set of transmission power levels of ub,μ is expressed as, { },1 2

, , , ,, ,..., bd
b b b bp p p µ
µ µ µ µρ = . The power control 

action space of the coordinator can be indicated as ( ),1 ,1 , bb b b b NA ρ ρ ρ= × ×⋅⋅⋅× . 
We define sb as the state of the agent, where sb=[Ib lb]. The coordinator's state space set S 

( i.e bs S∀ ∈  ) include all the possible states. Ib = [Ib,1, Ib,2, … Ib,Nb], which is the interference vector. 
lb is the coefficient vector, where lb = [λb,1, λb,2, … λb,Nb]. It is applied to estimate the relationship 
between SINRmin

b,μ and the actual SINRb,μ as follows: 
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The interference and SINR can be measured by the mobile edge server (MES). 
To maximize the energy efficiency (utility) of wireless body area network, we define the 

reward function as the energy efficiency (utility). The reward function of taking action ab in 
the state Sb can be expressed as follows: 
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In the Q-learning algorithm, the WBAN coordinator dynamically attunes the data 
transmission power of every sensor node based on the interference and SINR, so as to optimize 
the energy efficiency (reward function). 
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Fig. 3.  Procedure of agent reinforcement learning. 

 
The interaction with the environment can be modeled as (st
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where γ is the discount factor. The optimal transmission power strategy π* is obtained by 
maximizing the Q-function. Another expression of Q-function can be obtained by incremental 
summation: 
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(10) 

where α is the learning efficiency. According to (8) and (10), the Q-function is updated to 
obtain the optimal transmission power. 

Fig. 3 indicate the process of agent reinforcement learning for transmission power control. 
It shows the interaction between the agent and environment. The environment is modeled by 
the interference vector Ib (Ib=[Ib,1, Ib,2, … Ib,Nb]) and the coefficient vector lb (lb=[λb,1, λb,2, … 
λb,Nb]). In a certain environment, the agent takes an action by arranging the transmission power 
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of sensor nodes and the coordinator in WBANs. By taking action, the agent can calculate the 
reward function of the current environment and action. The action also changes the system 
state and environment. To optimize the Q-value, the agent adjust the transmission power 
allocation. On this basis, the power control algorithm is designed. According to the execution 
effect and state change of power allocation strategy, the current optimal strategy is learned to 
realize centralized power control. 

Fig. 4 shows the flow chart of power control mechanism base on reinforcement learning.  
Step 1: Initialization. The channel model (bandwidth, gain, etc.) is set to the initial 

information. The number of learning times is set to M. The power control action space and 
state space are set to A and S, respectively. 

Step 2: The state of agent is set to s. 
Step 3: The transmission power of the sensor nodes are allocated by ε-greedy algorithm. It 

explores the action in A by probability ε, and applies the action by probability 1-ε. When 
exploring, it chooses an action randomly within space A. When applying, it selects the action 
maximizing the current Q-value. 

Step 4: The sensor nodes transmit data using the allocated power. During transmission, the 
interference signals are detected. The reward function is calculated according to formula (8). 
The Q-function is calculated according to formula (10). 

Step 5: According to the new Q-function, the transmission power levels are allocated to 
maximize the Q-function value. The state is updated. 

Step 6: If the counter is smaller than M, the Q value is updated. The program will go to 
step 3 for next iteration of the loop. If the counter equals to M, the loop terminates.  
     Step 7: The transmission power of the sensor nodes are allocated according to the learning 
results. 
 

Start

Terminate

Initialization

Couting i=M

Allocate transmission 
power by ε-greedy

Update Q value

yes

no

Set state

Calculate reward function   

Update state   

Allocate transmission 
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Fig. 4.  Procedure of agent reinforcement learning. 
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In this algorithm, the initial information determines the work of the agent. The system is in 
a new state because the new transmission power vector will lead to interference and signal 
interference to noise ratio change. The Q-functions related to state action pairs and power 
strategies can be expressed as the energy efficiency of data transmission. In the next stage, the 
transmission power is regulated referring to the system reward. After every cycle, the 
algorithm calculate the value of Q-function. Applying Q-learning algorithm, the optimal 
transmission power can be acquired. 

4. Performance Evaluation 
In WBANs, the applications are extremely heterogeneous. The traffic data rates vary greatly 
vary. Applications transmitting simple data need a few kbit/s rate. Video streams requires 
several Mbit/s rate. The transmission data rate may be significantly higher in a particular time 
period, which is called a burst. Table 1 indicates the data rates requirement for some different 
applications. They are computed by the expected accuracy, the range, and the sampling rate 
[2-4]. Overall the user data levels cannot be seen to be high. Yet if the user ware many body 
sensors, for example, ECG, temperature, EEG, dozen motion sensors, the system assemble 
data rate can be several Mbps. It is higher than the commonly used radios.  

 
Table 1. Data rate requirement of healthcare applications 

 

 
 

WBAN body sensor nodes of can be classified according to the data’s priority. There are 
four categories: non-constrained traffic class (NTC), delay traffic class (DTC), reliability 
traffic class (RTC), critical traffic class (CTC). The non-constrained traffic class sensor nodes 
gather non-constrained data packets (NDP), which can tolerate certain degree of losses and 
have loose time delay requirement, such as Blood Pressure (BP) and temperature [12]. The 
delay traffic class sensor nodes collect delay data packets (DDP). These packets can tolerate 
some losses but have delay time-constraint, such as telemedicine video imaging. The reliability 
traffic class sensor nodes collect reliability data packets (RDP). This kind of data has strict 
requirement of packet loss ratio, but has no time delay constraint, such as heart rate (HR) and 
respiratory rate (RR). The critical traffic class sensor nodes collect critical data packets (CDP). 
These data packets have strict requirement of maximum loss and time-delay, like 
Electroencephalogram (EEG) and Electrocardiograph (ECG). Table 2 shows the four classes 
and priorities. 
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Table 2. Sensor classes and priorities 

 
 

The system energy efficiency, delivery ratio, and throughput of proposed reinforcement 
power control protocol is compared with above-mentioned TCM-TPC [10] and GABAT [18]. 
The system energy efficiency Ee is defined as the average energy consumption by each sensor. 
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where Et stands for the system energy consumption, ( )sT i  stands for the ith successful 
transmission. The delivery ratio Dr is defined as the percentage of the transmitted data frames 
that are successfully received.  
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where T(i) stands for the ith transmission. The system throughput is calculated by the total 
successful transmitted packets and the total time T: 
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We simulate the performance of proposed protocol in different scenarios with various node 
densities and environments. There are 100 sensors and 10 Coordinators in a 10m×10m square 
field. In one cycle, the first data frame is generated randomly. The application traffic is set to 
constant distribution with data rate 2 kbps. The channel rate is 250 kbps. The frequency band 
is in the range of 2400-2483.5 MHz. The MAC frame header size is 27 bytes. The payload 
length of data frame is 10 bytes. 

The WBAN Coordinators stay static for 10 seconds after the simulation starts. Then the 
coordinators begin to move at a speed [0, 1.5] (m/s) randomly. The sensor nodes mobility 
velocity is a random variable uniformly distributed in [0, 0.5] (m/s), which emulates the 
walking speed of men. Table 3 shows the energy consumption parameters applied in the 
simulation. The simulation program runs for 10 times. Every cycle of simulation executes 
independently. The average values are calculated according to the results. 

Fig. 5 display the simulation results of the system energy efficiency. For WBAN protocols, 
due to power limitation, energy efficiency is one of the most important metrics. The lifetime 
of WBANs can be extended by lessening the power consumption of sensor nodes. The figure 
indicates that by applying the proposed Q-learning power control mechanism, the system 
energy efficiency substantially increases. The network architecture of edge-cloud diminishes 
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the amount of data delay, thus reduces the energy consumption. Moreover, the Q-learning 
power control protocol minimizes the energy consumption while maintains the link quality. 
 

Table 3. Parameters of energy consumption 
State Energy Consumption 

Transmission data 36.5 mW 
Reception data 41.4 mW 

Idle status 41.4 mW 
Sleep status 42 μW 

 
In the topology control mechanism, the transmission energy of sensor nodes and 

coordinators can be diminished, which not only reduces the energy consumption of the system, 
but also lower the probability of beacon and data collision. If collision happens, retransmission 
is needed, which cause abundant power waste. Lower transmission power shortens the 
transmission range. Therefore, the overlap area of transmission range can be reduced. The 
proposed scheme can moderate the power consumption and extend the WBAN lifetime. 
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Fig. 5. Simulation results of energy efficiency. 

 
Fig. 6 demonstrates the delivery ratio of WBAN, which is also an important measurement. 

With the increase of user numbers, the delivery ratio of WBAN gradually degrades. The figure 
illustrates that the delivery ratio using Q-learning transmission power control protocol is 
higher than TCM-TPC and GABAT. The proposed protocol can reduce the collisions of 
beacon or data frames. In the meanwhile, this scheme enhances the link reliability. Because of 
the smaller collision rate, the successful transmission rate enlarges.  

Fig. 7 demonstrates the network throughput of WBAN. The system throughput reflects the 
WBANs data transmission capability, which is another critical measurement. With the 
increase of user numbers, the eHealth Internet of Things system throughput also increases. 
The figure illustrates that the system throughput using Q-learning power control protocol is 
higher than TCM-TPC and GABAT. Since the proposed protocol can reduce the collisions of 
beacon or data frames, thus decreasing the retransmission time. System throughput increases 
as there are less collision and the latency is shorter. Since the retransmission rate is lower, the 
data delay is shorter. The utilization of time slots is improved. It also shortens the average time 
delay.  
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Fig. 6. Simulation results of delivery ratio. 
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Fig. 7. Simulation results of throughput. 

6. Conclusions 
Wireless body area networks support the development of the Internet of Things eHealth 
systems. Because of the limitation of battery capacity, the energy efficiency of sensor nodes 
is an essential issue.  Moreover, due to the mobility of sensor nodes, the rapidly changing link 
state, and human body shadowing, communication reliability has tradeoff of energy 
consumption. For shorter task process delay, this paper apply the edge-cloud network 
architecture to the eHealth systems. A reinforcement learning based transmission power 
control algorithm is proposed. The energy utility model and optimization problem is solved 
by learning algorithm. By evaluating its performance, the proposed protocol demonstrates 
enhancement of the system energy efficiency, delivery ratio, and throughput.  
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