• Title/Summary/Keyword: low-heat concrete

Search Result 274, Processing Time 0.022 seconds

Strength Development of Mock-up Concrete Structure subjected to Extremely Low Temperature Condition Due to Curing Methods (극저온 조건에서의 양생방법 변화에 따른 실구조체 콘크리트의 강도발현 특성)

  • Jung, Eun-Bong;Jung, Sang-Hyeon;Ahn, Sang-Ku;Ko, Gyeong-Taek;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.47-49
    • /
    • 2012
  • Under this study, the characteristics of concrete intensity condition following the curing method under the extremely low temperature environment have been contemplated, and as a result, in the event of insulation + heat cable curing, the intensity and accumulated temperature accomplishment period is required for two times of requiring initial frost damage prevention than the case of heating + heat insulation curing method due to the insufficient calories supplied in general.

  • PDF

Experimental Estimation of the Early Strength of Belite Cement Mortar Using Microwave (저열 포틀랜드(4종)시멘트 모르터의 마이크로파를 이용한 조기강도 추정에 관한 실험적 연구)

  • 김민석;박재한;정근호;이종균;이영도;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1077-1082
    • /
    • 2001
  • The most recent building trend is going large, high rise, high strength as overlarge project is developing in domestic construction business. Belite cement has properties like low heat, excellent long term strength, and durability without admixture(fly ash, silica fume). so, Belite cement is suitable for mass structure which is needed high strength, high fluidity and low heat property. This study is to examine the possibility of site adoption microwave-use early strength estimation method. Based on the existed study related the portland cement, the interrelation between Belite cement and microwave-use early strength estimation method is required. In this study, interrelation between mortar and Evaluating strength estimation method is investigated before the concrete experiment.

  • PDF

An Experimental Study on the Early Strength Estimation of Belite Cement Concrete by Microwave Method (마이크로파 가열기법에 의한 저열 포틀랜드시멘트 콘크리트의 조기강도 추정에 관한 실험적 연구)

  • 이민경;황병준;전판근;박병근;김성식;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.1041-1046
    • /
    • 2003
  • The most recent building trend is going large, high rise, high strength as overlarge project is developing in domestic construction business. Belite cement has properties like low heat, excellent long term strength, and durability without admixture (fly ash, silica fume). So, Belite cement is suitable for mass structure which is needed high strength, high fluidity and low heat property. This study is to examine the possibility of site adoption microwave-use early strength estimation method. Based on the existed study related the portland cement, the interrelation between Belite cement and microwave-use early strength estimation method is required.

  • PDF

Fundamental Properties of the Low Heat Concrete depending on the Coarse Particle Cement (조분 시멘트의 치환율 변화에 따른 저발열 콘크리트의 기초적 특성)

  • Noh, Sang-Kyun;Baek, Dae-Hyun;Cha, Wan-Ho;Jang, Duk-Bae;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.45-48
    • /
    • 2007
  • This study investigates mechanical properties of the concrete using coarse particle cement which is manufactured by the classifying process. The variable factors are 3 types of W/C such as 40, 50, and 60% and 5types of the replacement of the coarse particle cement such as 0, 25, 50, 75, and 100%. As the results, amount of SP agent to secure the target fluidity is gradually declined in accordance with increasing CC replacement. There is no special tendency for target air content, but setting time is delayed according to increasing CC content. The peak of the simple adiabatic temperature rise is gradually decreased in accordance with increasing CC content, and approach time to peak is slightly delayed. The compressive strength is comparatively delayed.

  • PDF

An Experimental Study on the Strength of Concrete Using the Belite Cement (벨라이트시멘트를 사용한 콘크리트의 강도특성에 대한 실험적 연구)

  • 문한영;문대중;하상욱;김기수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.61-64
    • /
    • 1997
  • As construction technology advances, most of concrete structures are becoming larger and taller. Therefore, high strength and quality concrete is necessary for them. So, the proposal of using belite cement is investigated to satisfy high flowing, low heat, and high strength. In this study, the compressive strength, tensile strength, and modulous of elasticity of concrete using belite cement was considered according to the mix proposition condition as a water-cement ratio, unit cement content, and sand percentage.

  • PDF

A Study on high Quality of Antiwashout Underwater Concrete (수중불분리성콘크리트의 고품질화 연구)

  • 문한영;김성수;전중규;송용규
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.111-120
    • /
    • 2000
  • In case of constructing concrete structure under water, generally concrete mixed with antiwashout admixture, high range water reducer, or AE-water reducing agent etc has been manufactured to ensure the quality of antiwashout underwater concrete because of being difficulty in ascertaining construction situation by the naked eye. The properties of high quality antiwashout underwater concrete that were aimed at affluent fluidity, workability and the compressive strength of 450 kgf/$\textrm{cm}^2$ at 28 ages using two types of blended cements are following as;(1) Setting time of antiwashout underwater concretes using blended cements was more greatly delayed than that of control concrete, however, was satisfied with criteria value of "Quality standard specification of antiwashout admixture for concrete".(2) As a test results of slump flow, efflux time and box elevation of head, it was found that workability of high quality antiwashout underwater concrete was improved. (3) Heat evolution amount of OPC was 1.5 times as high as that of two types of bended cements in 72 hours. (4) Suspended solids of antiwashout underwater concrete using blended cements was more than that of control concrete, also compressive strength of high quality antiwashout underwater concrete was very low in early age, but was better than that of control concrete as to increasing ages.

Effect of the factor developing the Heat of Hydration on Durability Design in the Subway Concrete Structure (수화열 발생인자가 지하철 콘크리트 구조물의 내구설계에 미치는 영향)

  • Lim Young-Su;Kim Eun Kyum;Sung Ki Han
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1131-1137
    • /
    • 2004
  • With the recent continuous expansion of subways, newly created subways tend to have lower locations and wider sections. Furthermore. since box structures and evacuating tunnels are classified into a category of mass-concrete. the thermal-stress, emitted from the inside. causes cracks to structures from the inception of constructing. In this paper, thermal-stress analysis and durability evaluation of box structure were carried out to investigate relationship between durability and parameter causing the heat of hydration. Through the examination, this paper tries to find out satisfactory solutions to regulated thermal crack and ensure the required duration period. The results of this paper showed that to control thermal crack and guarantee the required duration period it was more effective to use low-heat-portland cement and moderateheat-portland cement. As cement volume due to reduction of water-cement ratio increased, the possibility of thermal cracks occurrence increased but results of durability evaluation was different depending on evaluation method. The results showed that the appropriate water-cement ratio to control the heat of hydration and satisfy the required durability was $45\∼55\%$. And it was showed that during placement of concrete blocks ambient temperature affect the heat of hydration. thermal crack and long-term durability largely and when concrete was placed at low temperature to control thermal crack. it need to try to guarantee the required duration period. Henceforth, by studying not only internal and external conditions, such as the relative humidity and the unit weight. but also methods, to evaluate durability, in accordance with domestic situations, more reasonable design of durability should be achieved.

  • PDF

Fundamental Study of the Behavior of Thermoelectric Module on Concrete Structure (콘크리트 구조물에서의 열전모듈 거동에 관한 기초연구)

  • Lim, Chisu;Lee, Jaejun
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.33-38
    • /
    • 2015
  • PURPOSES : The purpose of this paper is to investigate the application of thermoelectric technology to concrete structures for harvesting solar energy that would otherwise be wasted. In various fields of research, thermoelectric technology using a thermoelectric module is being investigated for utilizing solar energy. METHODS: In our experiment, a halogen lamp was used to produce heat energy instead of the solar heat. A data logger was used to record the generated voltage over time from the thermoelectric module mounted on a concrete specimen. In order to increase the efficiency of energy harvesting, various factors such as color, architecture, and the ability to prevent heat absorption by the concrete surface were investigated for the placement of the thermoelectric module. RESULTS : The thermoelectric module produced a voltage using the temperature difference between the lower and upper sides of the module. When the concrete specimen was coated with an aluminum foil, a high electric power was measured. In addition, for the power generated at low temperatures, it was confirmed that the voltage was generated steadily. CONCLUSIONS: Thermoelectric technology for energy harvesting can be applied to concrete structures for generating electric power. The generated electricity can be used to power sensors used in structure monitoring in the future.

Experimental Study on the Development of High-Performance Concrete (고성능 콘크리트 개발에 관한 실험적 연구 제 1보 : 고미분말 슬래그 혼합시멘트의 물성)

  • 구자술;이영진;김남호;정재동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.45-50
    • /
    • 1993
  • This paper describes some results of various tests which were carried out with varying the fineness of salg from 6000 to 10000$\textrm{cm}^2$/g and the slag content in cement from 30 to 50wt% for the perpose of utilizing finely ground blast-furnace slag as an ingredient for high-performance concrete. Test for heat of hydration, microstructural and hydration characteristics in paste, and fluidity and compressive strength in mortar were carried out. From these test results, it was found that, by properly determining the content and fineness of the slag, it is possible to manufacture high-performance concrete that has low heat of hydration, high early strength development, fine pore size and a highly densified microstructure.

  • PDF

The Effect of Heat Curing Methods on the Protection against Frost Damage at Early Age of the Concrete Under Extremely Cold Climate

  • Jung, Eun-Bong;Shin, Hyun-Sup;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.6
    • /
    • pp.513-521
    • /
    • 2013
  • This study aimed to examine whether heat curing methods of concrete subjected to $-10^{\circ}C$ could be effective by varying the combination of heating cable and surface heat insulations. Three different concrete specimens incorporating 30% fly ash with 50% W/B were fabricated to simulate wall, column and slab members with dimensions of $1600{\times}800{\times}200$ mm for slab, $800{\times}600{\times}200$ mm for wall and $800{\times}800{\times}800$ mm for column. For heat curing combinations, Type-1 specimens applied PE film for slab, plywood for wall and column curing. Type-2 specimens applied double layer bubble sheet (2LB) and heating coil for slab, and 50 mm styrofoam for wall and column curing. Type-3 specimen applied 2LB for slab, electrical heating mat for wall and column inside heating enclosure. The test results revealed that the temperature of Type 1 specimen dropped below $0^{\circ}C$ beginning at 48 hours after placement due to its poor heat insulating capability. Type 2 and 3 specimens maintained a temperature of around $5{\sim}10^{\circ}C$ after placement due to favorable heat insulating and thermal resistance.